首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
Catalytic reactions of DNA polymerase I from E. coli (Klenow fragment, KF) were monitored directly with a template/primer (40/25- or 75/25-mer)-immobilized 27-MHz quartz-crystal microbalance (QCM). The 27-MHz QCM is a very sensitive mass-measuring device in aqueous solution, as the frequency decreases linearly with increasing mass on the QCM electrode at the nanogram level. Three steps in polymerase reactions which include 1) binding of DNA polymerase to the primer on the QCM (mass increase); 2) elongation of complementary nucleotides along the template (mass increase); and 3) release of the enzyme from the completely polymerized DNA (mass decrease), could be monitored continuously from the time dependencies of QCM frequency changes. The binding constant (Ka) of KF to the template/primer DNA was 10(8)M(-1) (k(on) = 10(5)M(-1)s(-1) and k(off)= 10(-3)s(-1)), and decreased to 10(6)M(-1) (k'on = 10(4)M(-1)s(-1) and k'off = 10(-2)s(-1)) for completely polymerized DNA. This is due to the 10-fold decrease in binding rate constant (k(on)) and 10-fold increase in dissociation rate constant (k(off)) for completed DNA strands. Ka values depended slightly on the template and primer sequences. The kinetic parameters in the elongation process (k(cat) and Km) depended only slightly on the DNA sequences. The repair process during the elongation catalyzed by KF could also be monitored in real time as QCM frequency changes.  相似文献   

2.
The highly selective and sensitive detection of a chemical nerve agent analog pinacolyl methylphosphonate (PMP) was demonstrated using an electrochemically molecularly imprinted polymer (MIP) polythiophene film onto a quartz crystal microbalance (QCM) transducer surface. The fabrication and optimization of the sensor film was monitored by in situ electrochemistry‐QCM (EC‐QCM) measurements, which determined the change in mass and simultaneous change in redox properties of the polymer film. The film deposition, template loading, and template removal were evidenced by a combination of surface characterization techniques such as the attenuated total reflection infrared spectroscopy and high‐resolution X‐ray photoelectron spectroscopy. The fabricated MIP film demonstrated a limit of detection and a limit of quantification of ~60 and ~197 μM, respectively. The linear sensing range is between 125 and 250 μM concentration of PMP. Finally, theoretical modeling (AM1 semiempirical quantum calculations) studies revealed that a stable prepolymerization complex is formed in solution with the existence of H‐bonding interactions using the 2:1 monomer‐to‐template ratio. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
In a previous study, the nematic ordered cellulose (NOC) templates successfully induced biodirected epitaxial nanodeposition of cellulose nanofibers secreted by Gluconacetobacter xylinus along the orientation of the molecular tracks (Kondo et al. 2002). As an extended concept for the NOC, this article attempts to propose a sort of biomimic mineralization using the template. It combines morphologically controlling process with synthesis of the calcium phosphate as a major component of bones. This process was initially mediated by the modified NOC template having a pair of roles of the ion supply sources and scaffolds for 3D-ordering architecture of the calcium phosphate as a biomineral in the key functions for biomineralization. The successful establishment of such an ordered deposition of the inorganic on the template was confirmed by several surface characterizations such as atomic force microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and so on. Moreover, similarly to human bones, the obtained major assemble states of the calcium phosphates exhibited amorphous. The above process using the bifunctional cellulose template can be considered as a biomimic mineralization, which also opens pathways toward preparation of potentially versatile organic–inorganic order-patterned composites under a less energy consumption.  相似文献   

4.
研究了以石英晶体微天平(QCM)手性识别结果预测手性选择剂对外消旋物的手性识别能力的新方法。经过两步组装方式将手性选择剂L-苯丙氨酸(L-Phe)组装到QCM电极表面。通过检测电极共振频率、接触角和X射线光电子能谱的变化对组装结果进行了表征。应用蒸气扩散分子组装(VDMA)方式检测L-Phe修饰QCM电极对L-扁桃酸(MA)的手性识别能力,其手性识别选择性系数约为8。随后用L-Phe作为拆分剂试验了非对映体盐结晶法拆分手性扁桃酸,并优化了手性拆分条件。结果显示,以L-Phe作为拆分剂进行非对映体盐结晶法拆分手性扁桃酸的结果与QCM手性识别结果高度吻合,表明QCM手性识别可用作辅助筛选和预测非对映体盐结晶手性拆分法的手性拆分剂。  相似文献   

5.
Prussian Blue (PB) films have been considerably studied for many research applications such as electrochromic material development, new material for batteries, etc. Many analytical techniques were employed for examining PB electrochemical behaviour in solution and the quartz crystal microbalance (QCM) used in the alternative regime (ac electrogravimetry) appeared as an attractive in situ mass sensor due to its low cost and its high mass sensitivity. Unfortunately, the validity of the common Sauerbrey equation was questionable with these films or in other terms if the QCM was used as a pure mass sensor. In this work PB film is examined through acoustic measurements and the response can be interpreted as a pure mass change if the thickness is around 0.15 μm. Over this limit, film viscoelastic contributions can affect drastically the mass change estimation: if the thickness is two times larger, the mass error reaches 40%.  相似文献   

6.
Oligonucleotide-peptide conjugate was synthesized by coupling of RNase S-peptide to a 24-mer single-stranded DNA (ssDNA) oligonucleotide to be immobilized on its complementary ssDNA oligonucleotide-fixed gold surface of sensor chip or electrode. Immobilization of on the ssDNA-fixed gold surface through DNA duplex formation was confirmed by quartz crystal microbalance (QCM) and electrochemical measurements. After treating with a synthetic acridinyl poly(ethylene glycol) (APEG), specific interaction of S-protein with the S-peptide immobilized on the gold surface was demonstrated by QCM without nonspecific adsorption of unrelated proteins such as BSA and RNase A at the surfaces. This result suggested that the acridine parts of APEG could bind to the DNA duplex on the gold surface and the poly(ethylene glycol) parts were fastened on the surface to resist the adsorption of proteins. Thus, the combination of oligonucleotide-peptide conjugate, ssDNA-fixed chip and APEG with effective masking property provides a new tool for the analysis of specific peptide-protein interactions without disturbance by other unrelated proteins.  相似文献   

7.
Calcium phosphates are among the most important biominerals in living organisms, where they play both a mechanical and a calcium storage role. Their growth in vivo is under strong biological control, and this process occurs in closed spaces. Our aim in this paper is to describe a microreactor system able to control the mineralization process within closed spaces. To this aim we produce giant liposomes containing calcium ions as active ions in the mineralization process, spermine as an activator of crystal growth, and alkaline phosphatase as a catalyst to convert phosphate esters into phosphates. These phosphate esters are provided in the form of p-nitrophenyl phosphate outside of the liposomes. It is demonstrated that these amphiphilic molecules are able to diffuse through the lipidic container and to be subsequently hydrolyzed under enzymatic catalysis into active phosphate species which interact with the already available calcium and spermine to produce calcium phosphates only in the interior of the liposomes. This opens the route to control the calcium phosphate particle size in biomimetic systems.  相似文献   

8.
Shen D  Kang Q  Li X  Cai H  Wang Y 《Analytica chimica acta》2007,593(2):188-195
This paper presents different experimental results of the influence of an immersion angle (θ, the angle between the surface of a quartz crystal resonator and the horizon) on the resonant frequency of a quartz crystal microbalance (QCM) sensor exposed one side of its sensing surfaces to liquid. The experimental results show that the immersion angle is an added factor that may influence the frequency of the QCM sensor. This type of influence is caused by variation of the reflection conditions of the longitudinal wave between the QCM sensor and the walls of the detection cell. The frequency shifts, measured by varying θ, are related to the QCM sensor used. When a QCM sensor with a weak longitudinal wave is used, its resonant frequency is nearly independent of θ. But, if a QCM sensor with a strong longitudinal wave is employed, the immersion angle is a potential error source for the measurements performed on the QCM sensor. When the reflection conditions of the longitudinal wave are reduced, the influence of θ on the resonant frequency of the QCM sensor is negligible. The slope of the plot of frequency shifts (ΔF) versus (ρη)1/2, the square root of the product of solution density (ρ) and viscosity (η), may be influenced by θ in a single experiment for the QCM sensor with a strong longitudinal wave in low viscous liquids, which can however, be effectively weakened by using the averaged values of reduplicated experiments. In solutions with a large (ρη)1/2 region (0-55 wt% sucrose solution as an example, with ρ value from 1.00 to 1.26 g cm−3 and η value from 0.01 to 0.22 g cm−1 s−1, respectively), the slope of the plot of ΔF versus (ρη)1/2 is independent of θ even for the QCM sensor with a strong longitudinal wave in a single experiment. The influence of θ on the resonant frequency of the QCM sensor should be taken into consideration in its applications in liquid phase.  相似文献   

9.
A quartz crystal microbalance sensor (QCM) was developed for sensitive and specific detection of Salmonella enterica serovar typhimurium cells in food samples by integrating a magnetic bead purification system. Although many sensor formats based on bioaffinity agents have been developed for sensitive and specific detection of bacterial cells, the development of robust sensor applications for food samples remained a challenging issue. A viable strategy would be to integrate QCM to a pre-purification system. Here, we report a novel and sensitive high throughput strategy which combines an aptamer-based magnetic separation system for rapid enrichment of target pathogens and a QCM analysis for specific and real-time monitoring. As a proof-of-concept study, the integration of Salmonella binding aptamer immobilized magnetic beads to the aptamer-based QCM system was reported in order to develop a method for selective detection of Salmonella. Since our magnetic separation system can efficiently capture cells in a relatively short processing time (less than 10 min), feeding captured bacteria to a QCM flow cell system showed specific detection of Salmonella cells at 100 CFU mL−1 from model food sample (i.e., milk). Subsequent treatment of the QCM crystal surface with NaOH solution regenerated the aptamer-sensor allowing each crystal to be used several times.  相似文献   

10.
The application of acoustic wave microsensors for mass sensing will be reviewed with focus on the quartz crystal microbalance (QCM) and surface acoustic wave (SAW) devices. The use of QCM and SAW devices in chemical sensing as well as in the determination of solid and liquid properties will be described. In chemical sensing, it is unlikely that a single sensor with a single coating will display a selective and reversible response to a given analyte in a mixture. Alternative strategies such as the use of sensor arrays and the use of sampling devices can be used to improve performance. QCM sensors (QCMs) will oscillate under liquids; their use in under-liquid sensing will be discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Carboxymethyl cellulose-grafted polymethacrylic acid (CMC-g-PMAA) was synthesized by graft copolymerization process onto carboxymethyl cellulose backbone using methacrylic acid as a monomer and ammonium persulfate as a free radical initiator. CMC-g-PMAA was employed as dispersed template for controlling calcium phosphate mineralization from aqueous solutions at different copolymer contents and pHs. Hybrids with different morphologies and particles diameter were investigated by adjusting of preparation conditions. Synthesized hybrids were characterized by FT-IR, SEM, XRD, and particle size analyzer. Such functionalized hybrids with complex morphologies can be manipulated as a novel reinforcing fillers, ceramic precursors, or biomedical implants.  相似文献   

12.
Zhang Y  Lin F  Zhang Y  Li H  Zeng Y  Tang H  Yao S 《Analytical sciences》2011,27(12):1229-1235
A new method for the detection of point mutation in DNA based on the monobase-coded cadmium tellurium nanoprobes and the quartz crystal microbalance (QCM) technique was reported. A point mutation (single-base, adenine, thymine, cytosine, and guanine, namely, A, T, C and G, mutation in DNA strand, respectively) DNA QCM sensor was fabricated by immobilizing single-base mutation DNA modified magnetic beads onto the electrode surface with an external magnetic field near the electrode. The DNA-modified magnetic beads were obtained from the biotin-avidin affinity reaction of biotinylated DNA and streptavidin-functionalized core/shell Fe(3)O(4)/Au magnetic nanoparticles, followed by a DNA hybridization reaction. Single-base coded CdTe nanoprobes (A-CdTe, T-CdTe, C-CdTe and G-CdTe, respectively) were used as the detection probes. The mutation site in DNA was distinguished by detecting the decreases of the resonance frequency of the piezoelectric quartz crystal when the coded nanoprobe was added to the test system. This proposed detection strategy for point mutation in DNA is proved to be sensitive, simple, repeatable and low-cost, consequently, it has a great potential for single nucleotide polymorphism (SNP) detection.  相似文献   

13.
Coatings based on dendritic polyglycerol (dPG) were investigated for their use to control nonspecific protein adsorption in an assay targeted to analyze concentrations of a specific protein. We demonstrate that coating of the sample vial with dPG can significantly increase the recovery of an antibody after incubation. First, we determine the concentration dependent loss of an antibody due to nonspecific adsorption to glass via quartz crystal microbalance (QCM). Complementary to the QCM measurements, we applied the same antibody as analyte in an surface plasmon resonance (SPR) assay to determine the loss of analyte due to nonspecific adsorption to the sample vial. For this purpose, we used two different coatings based on dPG. For the first coating, which served as a matrix for the SPR sensor, carboxyl groups were incorporated into dPG as well as a dithiolane moiety enabling covalent immobilization to the gold sensor surface. This SPR-matrix exhibited excellent protein resistant properties and allowed the immobilization of amyloid peptides via amide bond formation. The second coating which was intended to prevent nonspecific adsorption to glass vials comprised a silyl moiety that allowed covalent grafting to glass. For demonstrating the impact of the vial coating on the accuracy of an SPR assay, we immobilized amyloid beta (Aβ) 1-40 and used an anti-Aβ 1-40 antibody as analyte. Alternate injection of analyte into the flow cell of the SPR device from uncoated and coated vials, respectively gave us the relative signal loss (1 − RUuncoated/RUcoated) caused by the nonspecific adsorption. We found that the relative signal loss increases with decreasing analyte concentration. The SPR data correlate well with concentration dependent non-specific adsorption experiments of the analyte to glass surfaces performed with QCM. Our measurements show that rendering both the sample vial and the sensor surface is crucial for accurate results in protein assays.  相似文献   

14.
A 2-D molecularly imprinted monolayer (2-D MIM) approach was used to prepare a simple and robust sensor for nitroaromatic compounds with 2,4-dinitrotoluene (DNT) as the model compound, which is a precursor and analog for explosive 2,4,6-trinitrotoluene (TNT). In contrast to studies utilizing long-chain hexadecylmercaptan self-assembled monolayers (SAM)s for sensing, a shorter-chain alkylthiol (i.e., butanethiol SAM) was utilized for DNT detection. The role of the chain length of the coadsorbed alkylthiol was emphasized with a matched template during solution adsorption. Semiempirical PM3 quantum calculations were used to determine the molecular conformation and complexation of the adsorbates. A switching mechanism was invoked on the basis of the ability of the template analyte to alter the packing arrangement of the alkylthiol SAMs near defect sites as influenced by the DNT-ethanol solvent complex. A 2-D MIM was formed on the Au surface electrode of a quartz crystal microbalance (QCM), which was then used to sense various concentrations of the analyte. Interestingly, the 2-D MIM QCM also enabled the selective detection of DNT even in a mixed solution of competing molecules, demonstrating the selectivity figure of merit. Likewise, electrochemical impedance spectroscopy (EIS) data at different concentrations of DNT confirmed the 2-D MIM effectiveness for sensing based on the interfacial conformation and electron-transport properties of the imprinted butanethiol SAM.  相似文献   

15.
We describe a novel and generally applicable approach for creating voids in films deposited on the surface of solid substrates. Such films are advantageous when a quartz crystal microbalance (QCM) is the basis of a sensor. We show that films with large void volumes produce more sensitive sensors than with the original film. Poly(methylmethacrylate) (PMMA) was used as the polymer layer deposited on a quartz crystal microbalance (QCM) to demonstrate our technique for the model system of water vapor analysis in flowing nitrogen gas. A film of pure PMMA on a QCM is a sensor for water vapor in a gas phase. A more sensitive sensor was created by dip coating QCM crystals into solutions containing mixtures of PMMA and poly(d,l-lactide) (PDLL) and then evaporating the solution films on the QCM crystals to form mixed polymer films of varying PDLL content. The PDLL was then removed from the mixed polymer films by exposure to a NaOH solution to form pure PMMA films having various void volumes. A leached PMMA film that originally contained 50% by weight PDLL had a 3.7 times larger QCM sensitivity for water vapor than a pure PMMA film.  相似文献   

16.
Huang GS  Wang MT  Hong MY 《The Analyst》2006,131(3):382-387
A 3 x 3 quartz crystal microbalance (QCM) sensor matrix, fabricated on an A-T cut quartz crystal, has the ability to detect online a variety of labeled DNA samples in a parallel and comparative fashion. The QCM matrix was equipped with a single oscillator circuit, which activated only one QCM at any given time, and was controlled by programmable time-shared electronic relays. The gold electrode had a diameter of 0.8 mm and operated at a fundamental resonating frequency of 40 MHz; the dimensions of the matrix were 1.2 cm x 1.2 cm. The sensitivity of an individual QCM was in the pictogram regime. Selected QCMs were coated with either streptavidin or the anti-DIG antibody; the specificity of their detections was monitored using various concentrations of samples of biotin- and DIG-labeled DNA. The basic design of the QCM matrix is readily expandable, without any conceivable difficulties, in both geometry and circuitry.  相似文献   

17.
Lysozyme and cytochrome c were imprinted in aqueous media, both as individual proteins and in combination, together with the functional monomer 3-aminophenylboronic acid (APBA) using ammonium persulphate as the initiator. The polymers were formed as films on the gold surfaces of quartz crystal microbalance (QCM) electrodes. It was shown that the lysozyme imprinted polymer was capable of selective template recognition. Micro-calorimetry measurements were used to determine the ratio of lysozyme and cytochrome c giving rise to the maximum enthalpy change when combined in the presence of the functional monomer. Using this procedure a maximum enthalpic change was found when the two proteins were present in an equimolar ratio. A polymer, formed by jointly imprinting the proteins in this ratio, exhibited minimal recognition for the individual template proteins, but was however able to recognise them in combination, suggesting that the proteins when imprinted together interact to form a ‘new’ imprintable motif.The introduction of a series of protein solutions, comprising the imprint proteins in various ratios, to the lysozyme/cytochrome c imprinted films, showed that the films exhibit maximum affinity towards the proteins when they are presented in approximately the same mole ratio (57% cytochrome c and 43% lysozyme) as was used to form the original imprint (equimolar ratio).Frequency response profiles of the QCM electrodes carrying the films, as a function of time, showed the establishment of a new stable baseline (−4.3 Hz) after the electrode was challenged with template protein (1.39 × 10−9 mol) in less than 3 min.  相似文献   

18.
Determining the blood glucose level is important for the prevention and treatment of diabetes mellitus. We developed a sensor system using Quartz Crystal Microbalance (QCM) to determine the blood glucose level from human blood serum. This study consists of two experimental stages: artificial glucose/pure water solution tests and human blood serum tests. In the first stage of the study, the QCM sensor with the highest performance was identified using artificial glucose solution concentrations. In the second stage of the study, human blood serum measurements were performed using QCM to determine blood glucose levels. QCM sensors were coated with phthalocyanines (Pcs) by jet spray method. The blood glucose values of 96 volunteers, which ranged from 71 mg/dL to 329 mg/dL, were recorded. As a result of the study, human glucose values were determined with an average error of 3.25%.  相似文献   

19.
Y?ld?z Uluda? 《Talanta》2010,82(1):277-383
A simple and sensitive sensor method for cancer biomarkers [prostate specific antigen (PSA) and PSA-alpha 1-antichymotrypsin (ACT) complex] analysis was developed, to be applied directly with human serum (75%) by using antibody modified quartz crystal microbalance sensor and nanoparticles amplification system. A QCM sensor chip consisting of two sensing array enabling the measurement of an active and control binding events simultaneously on the sensor surface was used in this work. The performance of the assay and the sensor was first optimised and characterised in pure buffer conditions before applying to serum samples. Extensive interference to the QCM signal was observed upon the analysis of serum. Different buffer systems were then formulated and tested for the reduction of the non-specific binding of sera proteins on the sensor surface. A PBS buffer containing 200 μg mL−1 BSA, 0.5 M NaCl, 500 μg mL−1 dextran and 0.5% Tween 20, was then selected which eliminated the interfering signal by 98% and enabled the biomarker detection assay to be performed in 75% human serum. By using Au nanoparticles to enhance the QCM sensor signal, a limit of detection of 0.29 ng mL−1 PSA and PSA-ACT complex (in 75% serum) with a linear dynamic detection range up to 150 ng mL−1 was obtained. With the achieved detection limit in serum samples, the developed QCM assay shows a promising technology for cancer biomarker analysis in patient samples.  相似文献   

20.
Molecularly imprinted polymers (MIPs) for screening to detect rubber latex allergens (Hev b1) in natural rubber based products were designed as artificial recognition polymeric materials coated onto a quartz crystal microbalance (QCM). The polymers were prepared using a stamp imprinting procedure after mixing optimum amounts of methacrylic acid–vinylpyrrolidone–dihydroxyethylene bisacrylamide and Hev b1 latex allergen proteins, obtained from rubber gloves. QCM measurements showed that the resulting polymer layers after removal of the proteins used in their preparation could incorporate structures and features down to nanometer scale of protein templates into the imprinted polymer much better than a non-specific control polymer under controlled sensor conditions and an optimized polymerization process. This selective polymer but not the non-selective polymer clearly distinguished between the latex allergen Hev b1 and proteins such as lysozyme, ovalbumin and bovine serum albumin, with a selectivity factor of from 2 to 4, and the response of the rubber elongation factors by an astonishing factor of 12. The imprinted cavities recognized specific binding sites and could distinguish among related hevein latex allergenic proteins isolated from fresh natural rubber latex; Hev b1, Hev b2, and Hev b3 with a selectivity factor of from 4 to 6. The different QCM measurements obtained presumably reflected slightly different conformations and affinities to the MIP binding sites. The sensor layers selectively adsorbed Hev b1 within minutes in amounts ranging from 10 to 1500 μg L−1 and with a detection limit of 1 μg L−1. This work has demonstrated that this new sensor provides a fast and reliable response to natural rubber latex protein, even after being extracted from the matrix of rubber gloves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号