首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Siderophores are key players in bacteria–host interactions, with the main function to provide soluble iron for their producers. Gramibactin from rhizosphere bacteria expands siderophore function and diversity as it delivers iron to the host plant and features an unusual diazeniumdiolate moiety for iron chelation. By mutational analysis of the grb gene cluster, we identified genes (grbD and grbE) necessary for diazeniumdiolate formation. Genome mining using a GrbD‐based network revealed a broad range of orthologous gene clusters in mainly plant‐associated Burkholderia/Paraburkholderia species. Two new types of diazeniumdiolate siderophores, megapolibactins and plantaribactin were fully characterized. In vitro assays and in vivo monitoring experiments revealed that the iron chelators also liberate nitric oxide (NO) in plant roots. This finding is important since NO donors are considered as biofertilizers that maintain iron homeostasis and increase overall plant fitness.  相似文献   

2.
Desferrioxamines are a structurally related family of tris-hydroxamate siderophores that form strong hexadentate complexes with ferric iron. Desferrioxamine B has been used clinically for the treatment of iron overload in man. We have unambiguously identified desferrioxamine E as the major desferrioxamine siderophore produced by Streptomyces coelicolor M145 and have identified a cluster of four genes (desA-D) that directs desferrioxamine biosynthesis in this model actinomycete. On the basis of comparative sequence analysis of the proteins encoded by these genes, we propose a plausible pathway for desferrioxamine biosynthesis. The desferrioxamine biosynthetic pathway belongs to a new and rapidly emerging family of pathways for siderophore biosynthesis, widely distributed across diverse species of bacteria, which is biochemically distinct from the better known nonribosomal peptide synthetase (NRPS) pathway used in many organisms for siderophore biosynthesis.  相似文献   

3.
Microbes use siderophores to access essential iron resources in the environment. Over 500 siderophores are known, but they utilize a small set of common moieties to bind iron. Azotobacter chroococcum expresses iron‐rich nitrogenases, with which it reduces N2. Though an important agricultural inoculant, the structures of its iron‐binding molecules remain unknown. Here, the “chelome” of A. chroococcum is examined using small molecule discovery and bioinformatics. The bacterium produces vibrioferrin and amphibactins as well as a novel family of siderophores, the crochelins. Detailed characterization shows that the most abundant member, crochelin A, binds iron in a hexadentate fashion using a new iron‐chelating γ‐amino acid. Insights into the biosynthesis of crochelins and the mechanism by which iron may be removed upon import of the holo‐siderophore are presented. This work expands the repertoire of iron‐chelating moieties in microbial siderophores.  相似文献   

4.
Borate binding to siderophores: structure and stability   总被引:2,自引:0,他引:2  
Well-known as specific iron chelating agents produced by bacteria, it is shown that some, but not all, siderophore classes have an unexpected binding affinity for boron. The relevant criterium is the availability of a vicinal dianionic oxygen containing binding group (i.e., citrate or catecholate). The resulting boron complexes have been characterized by ESI-MS, multinuclear NMR, and DFT calculations. Detailed boron binding constants have been measured for vibrioferrin, rhizoferrin, and petrobactin. The observed affinity of certain siderophores for borate, a common chemical species in the marine but not the terrestrial environment, allows for small, but potentially significant, concentrations of B-siderophores to exist at oceanic pH. We hypothesize that these concentrations could be sufficient for them to function as cell signaling molecules or as mediators of biological boron uptake. In addition, binding of the tetrahedral boron to these siderophores results in a conformation that is different from either the free siderophore or its iron complex and would thus allow a distinction to be made between its iron uptake and any putative cell signaling roles.  相似文献   

5.
Iron is an essential element in many biological systems, and in spite of its abundance (5% of the earth crust), its availability is dramatically limited by the very high insolubility of iron(III) at physiological pHs where the concentration of free iron(III) is less than 10?17 M, a value which is much too low to allow any possible growth to aerobic microorganisms. Iron metabolization by the microorganisms necessitates generally the biosynthesis of low molecular weight compounds (300 to 2000 Da) called siderophores. These molecules which are generally excreted into the culture medium, chelate very strongly iron(III), solubilize it and transport it into the cells using an ATP‐dependent high affinity transport system. For nearly fourty years, the structural studies on siderophores have shown a great diversity of structures for these iron‐chelating molecules synthesized by microorganisms. These structures are characterized by the presence of one, two and in most cases, three bidentate chelating groups, generally oxygenated, necessary for the formation of very stable hexacoordinated octahedric complexes between the siderophores and iron(III). These groups are generally either catecholates, or hydroxamates or hydroxyacids, but can be any other bidentate groups In what follows several typical examples of siderophores belonging to each of these categories are given. It is clear that considering the very high number of siderophores having so many different structures so far isolated and characterized (more than 200), we have restricted this report to the most representative structures of each category, with a special emphasis to pyoverdins, the fluorescent peptidic siderophores of the fluorescent pseudomonads. Similarly the siderophore‐mediated iron‐transport mechanisms of Gram‐negative bacteria described therafter will report mainly on those of Escherichia coli with a special emphasis to Pseudomonas when information is available. The pyoverdin‐mediated iron‐transport in fluorescent pseudomonads implies biochemical mechanisms which involve signal and energy exchanges between the two membranes across the periplasmic space. The energy transduction mechanism in the case of the pyoverdin‐mediated active transport in P. aeruginosa has not been completely elucidated so far. Nevertheless from the data obtained for ferric enterobactin and ferrichrome in E. coli, it is plausible that a common mechanism of transport can take place for all the enterobacteria. The key element of this mechanism is protein TonB in E. coli, head of a series of TonB proteins having a very close structure and characterized in P. putida WCS358 and P. aeruginosa ATCC 156942. The striking similarities existing between the various iron‐transport steps in these different bacterial species is highly in favour of a common energy‐dependent siderophore‐mediated iron‐transport mechanism in microorganisms.  相似文献   

6.
Some bacteria swarm under some circumstances; they move rapidly and collectively over a surface. In an effort to understand the molecular signals controlling swarming, we isolated two bacterial strains from the same red seaweed, Vibrio alginolyticus B522, a vigorous swarmer, and Shewanella algae B516, which inhibits V. alginolyticus swarming in its vicinity. Plate assays combined with NMR, MS, and X‐ray diffraction analyses identified a small molecule, which was named avaroferrin, as a potent swarming inhibitor. Avaroferrin, a previously unreported cyclic dihydroxamate siderophore, is a chimera of two well‐known siderophores: putrebactin and bisucaberin. The sequenced genome of S. algae revealed avaroferrin’s biosynthetic gene cluster to be a mashup of putrebactin and bisucaberin biosynthetic genes. Avaroferrin blocks swarming through its ability to bind iron in a form that cannot be pirated by V. alginolyticus, thereby securing this essential resource for its producer.  相似文献   

7.
Pathogenic bacteria obtain the iron necessary for survival by releasing an iron chelator, termed a siderophore, and retrieving the iron-siderophore complex via a cell surface siderophore receptor. We have exploited the high affinity of Yersinia enterocolitica for its siderophore, deferoxamine, to develop a rapid method for capture and identification of Yersinia. In this methodology, a deferoxamine-bovine serum albumin conjugate is printed onto a gold-plated chip in a parallel line pattern. After flowing a suspension of Yersinia across the siderophore-derivatized chip, any Yersinia that binds to the chip is detected by dark-field microscopy analysis of the scattered light, followed by Fourier transform analysis of the scattering pattern. Since peak intensities are found to correlate with pathogen concentration, pathogen titers as low as 10(3) cfu/ml can be readily detected. Moreover, immobilized deferoxamine can distinguish Y. enterocolitica, which binds ferrioxamine (deferoxamine-Fe), from Staphylococcus aureus, Mycobacterium smegmatis and Pseudomonas aeruginosa, which don't. Because human pathogens cannot easily mutate their iron retrieval systems without loss of viability, we suggest that few if any mutant Yersinia will emerge that can avoid detection. Together with previous results demonstrating selective capture of Pseudomonas aeruginosa by its immobilized siderophore (pyoverdin), these data suggest that pathogen-specific siderophores may constitute effective and immutable capture ligands for rapid detection and identification of their cognate pathogens.  相似文献   

8.
The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe (III)(Ent)] (3-). This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an antibacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [Fe (III)(Ent)] (3-) is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe (III)(Ent)] (3-) and Scn-Y106F:[Fe (III)(Ent)] (3-) complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe (III)(Ent)] (3-). Fluorescence, UV-vis, and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogues of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.  相似文献   

9.
《Chemistry & biology》1998,5(11):631-645
Background: Many pathogenic bacteria secrete iron-chelating siderophores as virulence factors in the iron-limiting environments of their vertebrate hosts to compete for ferric iron. Mycobacterium tuberculosis mycobactins are mixed polyketide/nonribosomal peptides that contain a hydroxyaryloxazoline cap and two N-hydroxyamides that together create a high-affinity site for ferric ion. The mycobactin structure is analogous to that of the yersiniabactin and vibriobactin siderophores from the bacteria that cause plague and cholera, respectively.Results: A ten-gene cluster spanning 24 kilobases of the M. tuberculosis genome, designated mbtA-J, contains the core components necessary for mycobactin biogenesis. The gene products MbtB, MbtE and MbtF are proposed to be peptide synthetases, MbtC and MbtD polyketide synthases, Mbtl an isochorismate synthase that provides a salicylate activated by MbtA, and MbtG a required hydroxylase. An aryl carrier protein (ArCP) domain is encoded in mbtB, and is probably the site of siderophore chain initiation. Overproduction and purification of the mbtB ArCP domain and MbtA in Escherichia coli allowed validation of the mycobactin initiation hypothesis, as sequential action of PptT (a phosphopantetheinyl transferase) and MbtA (a salicyl-AMP ligase) resulted in the mbtB ArCP domain being activated as salicyl-S-ArCP.Conclusions: Mycobactins are produced in M. tuberculosis using a polyketide synthase/nonribosomal peptide synthetase strategy. The mycobactin gene cluster has organizational homologies to the yersiniabactin and enterobactin synthetase genes. Enzymatic targets for inhibitor design and therapeutic intervention are suggested by the similar ferric-ion ligation strategies used in the siderophores from Mycobacteria, Yersinia and E. coli pathogens.  相似文献   

10.
background: Assimilation of iron is essential for microbial growth. Most microbes synthesize and excrete low molecular weight iron chelators called siderophores to sequester and deliver iron by active transport processes. Specific outer membrane proteins recognize, bind and initiate transport of species-selective ferric siderophore complexes. Organisms most often have specific receptors for multiple types of siderophores, presumably to ensure adequate acquisition of the iron that is essential for their growth. Conjugation of drugs to synthetic hydroxamate or catechol siderophore components can facilitate active iron-transport-mediated drug delivery. While resistance to the siderophore—drug conjugates frequently occurs by selection of mutants deficient in the corresponding siderophore-selective outer membrane receptor, the mutants are less able to survive under iron-deficient conditions and in vivo. We anticipated that synthesis of mixed ligand siderophore—drug conjugates would allow active drug delivery by multiple iron receptor recognition and transport processes, further reducing the likelihood that resistant mutants would be viable.Results: Mixed ligand siderophore-drug conjugates were synthesized by combining hydroxamate and catechol components in a single compound that could chelate iron, and that also contained a covalent linkage to carbacephalosporins, as representative drugs. The new conjugates appear to be assimilated by multiple active iron-transport processes both in wild type microbes and in selected mutants that are deficient in some outer membrane iron-transport receptors.Conclusions: The concept of active iron-transport-mediated drug delivery can now be extended to drug conjugates that can enter the cell through multiple outer membrane receptors. Mutants that are resistant to such conjugates should be severely impaired in iron uptake, and therefore particularly prone to iron starvation.  相似文献   

11.
The iroA locus encodes five genes (iroB, iroC, iroD, iroE, iroN) that are found in pathogenic Salmonella and Escherichia coli strains. We recently reported that IroB is an enterobactin (Ent) C-glucosyltransferase, converting the siderophore into mono-, di-, and triglucosyl enterobactins (MGE, DGE, and TGE, respectively). Here, we report the characterization of IroD and IroE as esterases for the apo and Fe(3+)-bound forms of Ent, MGE, DGE, and TGE, and we compare their activities with those of Fes, the previously characterized enterobactin esterase. IroD hydrolyzes both apo and Fe(3+)-bound siderophores distributively to generate DHB-Ser and/or Glc-DHB-Ser, with higher catalytic efficiencies (k(cat)/K(m)) on Fe(3+)-bound forms, suggesting that IroD is the ferric MGE/DGE esterase responsible for cytoplasmic iron release. Similarly, Fes hydrolyzes ferric Ent more efficiently than apo Ent, confirming Fes is the ferric Ent esterase responsible for Fe(3+) release from ferric Ent. Although each enzyme exhibits lower k(cat)'s processing ferric siderophores, dramatic decreases in K(m)'s for ferric siderophores result in increased catalytic efficiencies. The inability of Fes to efficiently hydrolyze ferric MGE, ferric DGE, or ferric TGE explains the requirement for IroD in the iroA cluster. IroE, in contrast, prefers apo siderophores as substrates and tends to hydrolyze the trilactone just once to produce linearized trimers. These data and the periplasmic location of IroE suggest that it hydrolyzes apo enterobactins while they are being exported. IroD hydrolyzes apo MGE (and DGE) regioselectively to give a single linear trimer product and a single linear dimer product as determined by NMR.  相似文献   

12.
Capillary electrophoresis (CE) was applied as a fast method of siderophore separation. Siderophores are iron binding and regulating cell products, which facilitate iron transport into cells. A fast and efficient method of siderophore analysis is important for better understanding of the iron pathways in a sea environment or marine organisms. The best results of CE analysis were obtained using free zone CE in 25 mM phosphate buffer at basic pH using a constant voltage of 20 kV. Under these conditions it was possible to detect the presence of siderophores in seawater.  相似文献   

13.
The behaviour of a series of hydroxamate siderophores--microbially produced iron complexes - was investigated using electrospray ionisation mass spectrometry (ESI-MS). Three groups of iron hydroxamate siderophores, namely the ferrioxamines, ferrichromes and coprogens/fusigens, were separated by high-performance liquid chromatography (HPLC) prior to ESI and MS(2) fragmentation. For the majority of the siderophores, both protonated molecules and sodium adducts were observed. The most abundant ion was selected for collision-induced fragmentation. Potential fragmentation mechanisms are postulated and discussed. Fragmentation patterns differed between siderophore groups; however, common fragmentation patterns were observed for siderophore ions within the groups examined. Cleavage frequently occurred at carbon-nitrogen or carbon-oxygen bonds. Fragmentation of the ions also involved cleavage of iron-oxygen bonds and transfer of the charge to iron.  相似文献   

14.
Ferric complexes of triscatechol siderophores may assume one of two enantiomeric configurations at the iron site. Chirality is known to be important in the iron uptake process, however an understanding of the molecular features directing stereospecific coordination remains ambiguous. Synthesis of the full suite of (DHBL/DLysL/DSer)3 macrolactone diastereomers, which includes the siderophore cyclic trichrysobactin (CTC), enables the effects that the chirality of Lys and Ser residues exert on the configuration of the Fe(iii) complex to be defined. Computationally optimized geometries indicate that the Λ/Δ configurational preferences are set by steric interactions between the Lys sidechains and the peptide backbone. The ability of each (DHBL/DLysL/DSer)3 diastereomer to form a stable Fe(iii) complex prompted a genomic search for biosynthetic gene clusters (BGCs) encoding the synthesis of these diastereomers in microbes. The genome of the plant pathogen Dickeya chrysanthemi EC16 was sequenced and the genes responsible for the biosynthesis of CTC were identified. A related but distinct BGC was identified in the genome of the opportunistic pathogen Yersinia frederiksenii ATCC 33641; isolation of the siderophore from Y. frederiksenii ATCC 33641, named frederiksenibactin (FSB), revealed the triscatechol oligoester, linear-(DHBLLysLSer)3. Circular dichroism (CD) spectroscopy establishes that Fe(iii)–CTC and Fe(iii)–FSB are formed in opposite enantiomeric configuration, consistent with the results of the ferric complexes of the cyclic (DHBL/DLysL/DSer)3 diastereomers.

Synthesis and genome mining leverage access to diastereomers of the siderophore cyclic trichrysobactin. Computational modeling and CD spectroscopy address effects that ligand-based stereochemistry exerts on the configuration at Fe(iii).  相似文献   

15.
Several analogues of vanchrobactin, a catechol siderophore isolated from the bacterial fish pathogen Vibrio anguillarum serotype O2 strain RV22, have been synthesized. The biological evaluation of these novel compounds showed that most of them are active as siderophores, as determined by growth promotion assays using the producer strain, as well as V. anguillarum serotype O1, Salmonella enterica, and Erwinia chrysanthemi. These compounds also gave a positive chrome azurol-S (CAS) test. On the basis of these results, we were able to deduce some structure-activity relationships. Furthermore, we found an analogue with siderophore activity that has appropriate functionality (an amino group) for use as an antibiotic vector to be employed in a "Trojan horse strategy".  相似文献   

16.
Two Burkholderia gladioli strains isolated from the lungs of cystic fibrosis patients were found to produce unusual lipodepsipeptides containing a unique citrate-derived fatty acid and a rare dehydro-β-alanine residue. The gene cluster responsible for their biosynthesis was identified by bioinformatics and insertional mutagenesis. In-frame deletions and enzyme activity assays were used to investigate the functions of several proteins encoded by the biosynthetic gene cluster, which was found in the genomes of about 45 % of B. gladioli isolates, suggesting that its metabolic products play an important role in the growth and/or survival of the species. The Chrome Azurol S assay indicated that these metabolites bind ferric iron, which suppresses their production when added to the growth medium. Moreover, a gene encoding a TonB-dependent ferric-siderophore receptor is adjacent to the biosynthetic genes, suggesting that these metabolites may function as siderophores in B. gladioli.  相似文献   

17.
The atomic and electronic structures of Ta(N) (N=2-23) clusters have been determined in the framework of pseudopotential density-functional calculations, based upon an unbiased global search with guided simulated annealing to an empirical potential. It is found that the ground-state structures of Ta(N) are very similar to those of Nb(N), showing no preference for the icosahedral growth. Also, a size- and structure-dependent ferroelectricity is found in these tantalum clusters. More importantly, it is found that the ferroelectricity and ferromagnetism can coexist in the homogeneous transition-metal cluster, offering a possibility to obtain a new type of "multiferroic" materials composed of the clusters. Finally, the far-infrared spectroscopy is suggested to be an efficient tool to distinguish the ferroelectric clusters.  相似文献   

18.
Currently, the role of DNA-directed alkylating agents as potential anticancer/ antimicrobial drugs is of wide interest. Most of the alkylating agents used clinically as drugs damage DNA in cells without specificity, and this can lead to undesired toxicity problems. Minimizing serum residence time by targeting the drug to select pathogens or organs might diminish the effects of nonselective reactivity. This paper describes the syntheses and preliminary studies of analogs of siderophores (microbial iron chelators) 2 and 20 that incorporate centers within the siderophore framework capable of generating potent electrophiles (iminium ions), hopefully after directed cellular recognition and uptake. Formation of N-aminals from trimelamol (3) and substituted hydroxamic acid 4 or 5was critical for the design and synthesis of the targets. In preliminary biological testing, compound 2, a trimelamol-based siderophore analog, was active against Escherichia coli X580, illustrating the therapeutic potential of this new type of siderophore-mediated drug design and delivery.  相似文献   

19.
Most species of bacteria employ siderophores to acquire iron. The chirality of the ferric siderophore complex plays an important role in cell recognition, uptake, and utilization. Corynebactin, isolated from Gram-positive bacteria, is structurally similar to enterobactin, a well known siderophore isolated from Gram-negative bacteria, but contains L-theronine instead of L-serine in the trilactone backbone. Corynebactin also contains a glycine spacer unit in each of the chelating arms. A hybrid analogue (serine-corynebactin) has been synthesized. The chirality and relative conformational stability of the three ferric complexes of enterobactin, corynebactin, and the hybrid has been investigated. In contrast to enterobactin, corynebactin assumes a Lambda configuration. However, the ferric serine-corynebactin hybrid forms a racemic mixture, only slightly favoring the Lambda conformation.  相似文献   

20.
Two new siderophores belonging to the hydroxamate class, Legonoxamine A (1) and B (2) have been isolated from the soil bacterium, Streptomyces sp. MA37, together with one known compound, desferrioxamine B (3). Their structures were elucidated based on spectroscopic methods including 1D, 2D NMR, MS, as well as by comparison with the relevant literatures. To our knowledge, this is the first report describing a siderophore containing the N-hydroxyl phenylacetyl cadaverine (HPAC) moiety in the structure. Based on bioinformatics analysis and previous knowledge of the biosynthesis of the hydroxamate-type siderophore, the biosynthetic gene cluster (lgo) responsible for the production of 13 was identified in the annotated genome of the producing strain. The supplementation of phenylacetate and benzoate analogues with meta substitution into the cultures of Streptomyces sp. MA37 resulted in the production of new legonoxamine A derivatives as observed in LC-HR-ESIMS, suggesting that the legonoxamine biosynthetic pathway has a good degree of natural flexibility of accepting unnatural precursors with different functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号