首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microwave measurements on the ground and first eight excited states of the ring-puckering vibration of butadiene sulfone have been extended to millimeter wavelengths. The microwave spectra of the same vibrational states of α,α′-D4 butadiene sulfone have been observed. For both isotopomers the Coriolis interaction between the v = 0 and v = 1 states has been analyzed to give the energy separation between these two states. These data and the variation of the rotational constants have been used to derive reduced potential functions for the ring-puckering vibration. The barrier to ring inversion is 49(2) cm−1 for butadiene sulfone and 44(2) cm−1 for the α,α′-D4 isotopomer. The ring-puckering vibrational dependence of the quartic centrifugal distortion constants, including a small dependence of ΔJ and δJ, has been accounted for.  相似文献   

2.
The results of microwave spectrum investigation of the excited vibrational states of furfural in the frequency range between 49 and 149 GHz are reported. In total 15 excited vibrational states (9 for trans-furfural and 6 for cis-furfural) were assigned and analyzed. Six of the 15 investigated states were assigned for the first time. Accurate values of rigid rotor and quartic centrifugal distortion constants of asymmetric top Hamiltonian have been determined for 13 excited states. Also for some states several sextic and octic level constants were needed in order to fit the data within experimental accuracy. The vt = 3 and vs = 1, va = 1 states of trans-furfural were found to be strongly perturbed and only rotational transitions with low Ka values can be reliably identified in this study.  相似文献   

3.
The vibration-rotation spectra of 13C monosubstituted acetylene, 12C13CH2, have been recorded in the region between 450 and 3200 cm−1 with an effective resolution ranging from 0.004 to 0.006 cm−1. A total of about 5300 rovibrational transitions have been assigned to 53 bands involving the bending states up to vt=v4+v5=4, allowing the characterization of the ground state and of 30 vibrationally excited states. All the bands involving states up to vt=3 have been analyzed simultaneously by adopting a model Hamiltonian which takes into account the vibration and rotation l-type resonances. The derived spectroscopic parameters reproduce the transition wavenumbers with a RMS value of the order of the experimental uncertainty. Using the same model larger discrepancies between observed and calculated values have been obtained for transitions involving states with vt=4. These could be satisfactorily reproduced by only adopting, in addition to the previously determined parameters which were constrained in the analysis, a set of effective constants for each vibrational manifold.  相似文献   

4.
High-resolution (0.0015-0.0035 cm−1) infrared spectra of isotopically enriched 11BF3 have been examined in detail. The analysis of the combination and overtone states within the region of study, from 1650 to 4600 cm−1, led to the assignment of over 25,000 transitions. The major perturbations were due to the Fermi resonances between states possessing one quantum of v3 and three quanta of v4. With corrections through the quadratic rotational terms, the equilibrium Be and Ce values have been determined; 0.3462679(7) cm−1 and 0.1731151(6) cm−1, respectively. An improved set of equilibrium rotational constants for 10BF3, consistent with this analysis of 11BF3 are also given. The averaged equilibrium values for both isotopomers lead to a B-F bond distance of re = 130.704 ± 0.005 pm. All of the quadratic anharmonic constants, with the exception of x33 were independently determined from experiment. For the first time for BF3, a normal force field analysis was performed that utilized the experimentally determined, fundamental harmonic vibrational frequencies.  相似文献   

5.
The microwave spectrum of N-cyanopyrrolidine was observed and assigned in the ground and nine excited states. In the lowest two states, split 3.9 cm?1 by a ring-puckering, nitrogen-inversion motion, the rotational constants are (for v = 0) A = 6585.05 ± 3.83, B = 1919.54 ± 0.05, C = 1583.84 ± 0.05, and (for v = 1) A = 6575.31 ± 6.01, B = 1922.37 ± 0.08, C = 1586.44 ± 0.08 MHz. Deviations from rigid rotor behavior in the lowest two states were described and analyzed by inclusion of a Hamiltonian term coupling the states via the internal vibrational angular momentum. The observed conformation of the five-membered ring system was found to be the envelope equatorial form. The tunneling motion which interconverts equivalent conformers has been discussed, and the qualitative nature of the potential energy surface has been described and compared to the parent unsubstituted molecule.  相似文献   

6.
The absorption spectrum of deuterated nitrous acid DONO in the region from 2350 to 3000 cm−1 has been recorded at a resolution of 0.003 cm−1 using a Fourier-transform spectrometer. For the first time, 1366 a- and b-type transitions in the υ1 fundamental band of trans-DONO and 741 b-type transitions in the υ1 fundamental band of cis-DONO have been assigned. Rotational and centrifugal distortion constants up to sextic order were determined for the v1 = 1 states of trans- and cis-DONO using non-linear least-squares calculations. Synthetic spectra calculated using the new rovibrational constants obtained for both species reproduce the observed spectra very well. In addition, the infrared transitions of this study were used, together with previously published pure rotational transitions, to determine improved rotational and centrifugal distortion constants of the ground states of trans- and cis-DONO.  相似文献   

7.
The room-temperature rotational spectrum of fluorobenzene was studied in the frequency region 167-318 GHz. Rotational transitions were assigned and measured in the ground vibrational state, and all six excited vibrational states with energies below 600 cm−1, i.e., v11 = 1, v11 = 2, v18b = 1, v16a = 1, v16b = 1, and v6a = 1. Accurate quartic-level spectroscopic constants were determined for all states, allowing spectral predictions well into the submillimeter region. The states v18b = 1 and v16a = 1 were found to be connected by a strong Coriolis interaction, which allowed precise determination of their energy separation, ΔE = 7.455088(3) cm−1. Unambiguous assignment of vibrational modes was made on the basis of the calculated inertial defect and nuclear spin statistical weights. Rotational constants for the 13C4 isotopomer have also been redetermined and two new least-squares determinations of the geometry of fluorobenzene, r0 and are reported.  相似文献   

8.
Twenty one laser lines of the 250–1000 GHz range have been assigned in the v6 and v8 excited states of the H12COOH molecule. The microwave study of these two states has allowed us to determine the molecular constants and to calculate the energy levels up to J = 50. The values of the energy levels of the ground state are well known and allow the frequency calculation of infrared rovibrational transitions near the 9.6–10.6 μm region and the comparison with the frequencies of the CO2 laser lines. A microwave infrared double-resonance experiment has also been performed to confirm assignment based on the calculation of the energy levels. The value of the two band centers has been determined.  相似文献   

9.
The millimeter-wave spectrum of 2,3-dihydrofuran in the ground and five ring-puckering excited states has been measured in the frequency range 100–250 GHz. The ground and first ring-puckering excited states have been fitted to a two-state Hamiltonian including Coriolis coupling interaction. The determined energy difference of 18.684(7) cm−1between these states and theaandbtype coupling parameters are consistent with the ring-puckering potential function and the previously observed dependence of the centrifugal distortion constants ΔJK, ΔK, and δK. A small ring-puckering dependence of the quartic centrifugal distortion constants ΔJand δJhas been also observed. This dependence is well accounted for in terms of the ring-puckering potential function and the vibrational dependence of the rotational constants.  相似文献   

10.
Microwave measurements of rotational transitions within vibrationally excited states of several isotopic species of HCN have given improved values for the pertinent Bv constants. These new data have been combined with infrared measurements given in the literature (ncluding Dv terms) to arrive at a set of rovibrational constants (α and γ constants) which is consistent with all available data. Bond distances resulting from several different Be approximations are intercompared to assess the variability of the re values and the importance of the γ terms. The latest r0 and rs bond distances are also given.  相似文献   

11.
The so-called pentad of 12CD4 consists of the vibrational states v1 = 1(symmetry A1), v3 = 1(F2), v2 = 2(A1 + E), v2 = v4 = 1(F1 + F2), and v4 = 2(A1 + E + F2). All states are located in the 1950 to 2250-cm?1 region and all are strongly interacting. In the present work we have assigned more than 5000 infrared rotation-vibrational transitions and 163 isotropic Raman transitions from the vibrational ground state to the pentad. We have used infrared and Raman spectra of a resolution better than 0.01 cm?1. From the experimental wavenumbers 2567 pentad rotation-vibrational energy levels with J ≦ 20 have been determined. These levels are reported in the paper. The levels have been used for refinements of the spectroscopic constants of two physically different effective Hamiltonians for the pentad states. For all levels with J ≦ 12 an unweighted standard deviation of 0.004 cm?1 is obtained for both Hamiltonians, whereas the standard deviation increases more or less rapidly with J above 12 due to the imperfections of the Hamiltonians. The values of the spectroscopic constants of both Hamiltonians (85 and 106, respectively) are reported and the effects of the approximations are discussed.  相似文献   

12.
We record double resonance spectra of the 4ν1 band of jet-cooled 13C-methanol using single rotational state selection in the ν1 fundamental and subsequent promotion of the selected molecules to the fourth vibrational level. We then detect transitions to the final excited states by infrared laser assisted photofragment spectroscopy (IRLAPS). The assigned A symmetry transitions reach upper states with K=0 and 1, and J from 0 to 5. For E symmetry, the transitions reach levels with K in the range −3 to 2 and J from 1 to 7. The rotation-torsional analysis determines a value for the torsional tunneling splitting of 2.8±0.4 cm−1 at v1=4. In a previous paper (J. Chem. Phys.110, 11 359-11 367 (1999)), we reported a trend of monotonically decreasing tunneling splittings in 12CH3OH for v1=0, 3, and 6 that we explained by a model that incorporates a linear increase in the torsional barrier height with OH stretch excitation. The 13CH3OH tunneling splitting for the 4ν1 band is in quantitative agreement with the trend found for 12CH3OH.  相似文献   

13.
The vibration-rotation spectrum of 13C2D2 has been recorded in the infrared region between 420 and 1100 cm−1 with an effective resolution ranging from 0.004 to 0.006 cm−1, and in the millimeter-wave region between 68 and 518 GHz. A total of about 1400 rovibrational transitions (66 of which have been measured in the millimeter-wave region) have been assigned to 8 bands with 15 l-vibrational components involving the bending states up to vt=v4+v5=2. The ground state and nine vibrationally excited states have been characterized. All the measured transitions have been analyzed simultaneously by adopting a model Hamiltonian which takes into account the usual vibration and rotation l-type resonances, together with the Darling-Dennison coupling between the v4=2 and v5=2 bending states. The derived spectroscopic parameters reproduce the transition wavenumbers with a standard deviation of the fit of the order of the experimental uncertainty.  相似文献   

14.
The enriched 81Br isotopic species of bromofluoromethane has been investigated in the infrared and microwave regions. The rovibrational spectrum of the ν5 fundamental has been studied by high resolution FTIR spectroscopy, while the rotational spectra of the ground and v6 = 1 states have been observed by means of microwave spectroscopy. More than 2700 transitions have been assigned in the ν5 band and the analysis of the rovibrational structure reveals a first-order c-type Coriolis resonance with the v6 = 2 state. The present study improves the ground state constants available in the literature and enables the determination of further centrifugal distortion parameters together with the full bromine quadrupole coupling tensor. A set of spectroscopic parameters up to the sextic distortion terms for the vibrational excited states has been accurately evaluated for the first time.  相似文献   

15.
The vibrational, rotational, and centrifugal spectroscopic constants and the radiative parameters (the Einstein coefficients, oscillator strengths, Frank-Condon factors, r v′v″ centroids, and wavenumbers of rotational lines) of electronic-vibrational-rotational transitions in the systems of bands B 1Π -X 1Σ+ of NaK (0 ≤ v′ ? 14, 0 ≤ v″ ≤ 52, j = 0, 30, 50, 70, 80, and 100), NaRb (0 ≤ v′ ≤ 12, 0 ≤ v″ ≤ 51, j = 0, 20, 30, 50, 70, 90, 100, and 120), and NaCs (0 ≤ v′ ≤ 10, 0 ≤ v″ ≤ 44, j = 0, 30, 50, 70, 90, 100, and 120) molecules, as well as the radiative lifetimes of excited electronic states, are calculated. Calculations are performed based on semiempirical potential curves constructed in this work. The calculated spectroscopic constants and the radiative lifetimes are compared with experimental values.  相似文献   

16.
The infrared spectra of the 2ν1, 2ν2 and 2ν3 overtones of perchloryl fluoride, FClO3, have been recorded at high resolution using monoisotopic pure samples. Four symmetric top species have been investigated: F35Cl16O3, F37Cl16O3, F35Cl18O3 and F37Cl18O3. The vi = 2, i = 1, 2, 3 vibrationally excited states are totally symmetric, so these overtones correspond to parallel bands of medium/weak intensity, centered from 2010 to 2120 cm−1 (2ν1), from 1390 to 1430 cm−1 (2ν2) and from 1070 to 1100 cm−1 (2ν3). Most of the bands are unperturbed and their analysis was straightforward. The band origins, the rotational and centrifugal molecular constants in the v1 = 2, v2 = 2 and v3 = 2 states have been determined, with standard deviations of the fits from 0.00024 to 0.00067 cm−1. The 2ν1 overtones of F35Cl16O3 and F37Cl16O3 are perturbed by an A1/E Coriolis resonance between the v1 = 2 state and one E component of the v4 = 1, v6 = 2 manifold. The 2ν2 of F37Cl18O3 is perturbed by the same kind of interaction involving the v1 = v6 = 1 (E) state, at about 1396 cm−1. In these bands the resonance is localized on rotational levels with specific J and K values. As a consequence, a few transitions of the perpendicular bands involving the interacting levels could be identified in the spectra. A simultaneous fit of the transitions assigned to the dyads has been performed and the parameters of the excited states have been determined, including the high order Coriolis interaction coefficient . The anharmonic constants x11, x22, x33 of all the studied isotopologues of FClO3, x46 of F35Cl16O3, x46 + g46 of F37Cl16O3 and x16 of F37Cl18O3, have been derived.  相似文献   

17.
The ring-puckering vibration has been observed in the Raman spectra of the vapor phase of several deuterated species of trimethylene oxide (α - d2, β - d2, α, α′ - d4, and d6). Only Δv = 2 transitions have a measurable Raman intensity. The line positions agree with infrared values to better than 0.5 cm−1 in most cases and better than 1 cm−1 in all cases. For all molecules the interpretation of the spectra is consistent with an essentially planar configuration having only a small barrier to inversion.  相似文献   

18.
Ro-vibrational levels of the ground state of ICl have been measured in the range vx = 35–73 and Jx < 55 using three-stage polarization-labeling spectroscopy. When merged with established microwave and fluorescence data for the lower levels, these results lead to a self-consistent set of spectroscopic constants Gv, Bv, Dv and Hv for all levels vx ≤ 73. The highest Gv and Gv + FJ term values recorded are, respectively, 52.7 and 1.37 cm?1 below the dissociation limit. Coefficients of the long-range interaction I + Cl are determined by analysis of the outer wings of the RKR potentials for the X(0+) and A′(2) states. Electronic rotational interaction between X and the well-known A(1) state of ICl is shown to account for at least a major part of the Ω-doubling splitting observed in A: the electronic matrix element characterizing this interaction is shown to be strongly r-dependent, and reasons for this are reviewed.  相似文献   

19.
The microwave spectra of the ground state and three excited states of the most abundant species of phenyl isocyanate have been recorded between 8 and 40 GHz. From aR-type transitions the ground-state rotational constants were calculated. The A value showed clearly a tilt of the NCO group from the C2v axis. They yielded the r0-type parameters. A centrifugal distortion treatment confirmed the validity of the rigid rotor approximation. The dipole moment components μa and μb were derived from the field strength dependence of six Stark lobes of five transitions. The values found were μa = (2.50 ± 0.02) D, μb < 0.2 D. From relative intensity measurements, the lowest vibrational excitation energies were determined. We assigned the lowest one to the NCO group torsion. All aR-type transitions of excited states were found unsplit by the internal rotation of the NCO group. The weakness of the μb dipole moment component and of the overall spectrum intensity did not allow us to find μb-type transitions and so, no splitting was observed on the ground-state spectrum. An evaluation of the V2 high barrier is given.  相似文献   

20.
We have measured millimeter-wave transitions of PO, produced by the chemiluminescent reaction of oxygen with white phosphorus, P4, in excited vibrational states up to v=7. We were hence able to obtain more precise rotational, spin-rotation, Λ-doubling, and hyperfine constants for this radical and better describe their vibrational dependence. The equilibrium PO bond length was determined as re=1.476 373 55(10) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号