首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ab initio calculations using a Gaussian orbital basis set were performed on the two boron-nitrogen polymer systems polyaminoborane and polyboronimide. For the polyaminoborane system an alternating B-N bond model appears to be more stable than a symmetric B-N bond model. An electron drift from the NH2 group to the BH2 moiety was calculated for both models although the nitrogen atom was found to possess a negative charge stemming from polarization of the N-H bonds. The energy band diagrams derived from both models show rather featureless bands indicative of weakly interactive systems although that of polyboronimide indicates that it is a more delocalized system than its saturated counterpart. The conduction and valence bands at the X-point are composed of orbitals and the lowest electronic transition is predicted to be —* in nature. The electron distribution of polyboronimide indicates a movement of -electrons from the boron to the nitrogen coupled with a smaller -electron drift from the nitrogen to the boron.  相似文献   

2.
Car-Parrinello molecular-dynamics simulations of supercritical carbon dioxide (scCO(2)) have been performed at the temperature of 318.15 K and at the density of 0.703 g/cc in order to understand its microscopic structure and dynamics. Atomic pair correlation functions and structure factors have been obtained and good agreement has been found with experiments. In the supercritical state the CO(2) molecule is marginally nonlinear, and thus possesses a dipole moment. Analyses of angle distributions between near neighbor molecules reveal the existence of configurations with pairs of molecules in the distorted T-shaped geometry. The reorientational dynamics of carbon dioxide molecules, investigated through first- and second-order time correlation functions, exhibit time constants of 620 and 268 fs, respectively, in good agreement with nuclear magnetic resonance experiments. The intramolecular vibrations of CO(2) have been examined through an analysis of the velocity autocorrelation function of the atoms. These reveal a red shift in the frequency spectrum relative to that of an isolated molecule, consistent with experiments on scCO(2). The results have also been compared to classical molecular-dynamics calculations employing an empirical potential.  相似文献   

3.
Boron hydrides (BH3, B2H6, B3H7, B4H10, B5H9, and B5H11) and their cations are studied by the coupled cluster CCSD(T) theory, the second-order Mller-Plesset (MP2) perturbation method, and the electron propagator theory in the partial third-order quasi-particle approximation, using the 6-311G(d,p) basis set. The vertical ionization potential energies are calculated, indicating an excellent agreement with the experimental data from photoelectron spectroscopy. Assignments to the experimental spectra are made on the basis of the present computational analyses. A significant Jahn-Teller effect on BH3+ leads to two states, 2A1 and 2B2, with the split energy of 0.14 eV. The triple and double B-H-B bridges are formed in B2H6+ and b-B3H7+, respectively. A new B-H-B bridge is formed while two B-B bonds are broken in B5H11+. The Jahn-Teller effect lowers the symmetry of B5H9 (C4v) to B5H9+ (C2) but slightly influences the structure of ara-B4H10 (C2v). The calculated properties of geometries, vibrational frequencies, and energies are compared with the experimental data available in the literatures.  相似文献   

4.
Ab initio calculations have been performed on single‐electron halogen bonds between methyl radical and bromine‐containing molecules to gain a deeper insight into the nature of such noncovalent interactions. Bader's atoms in molecules (AIM) theory have also been applied to the analysis of the linking of the single‐electron halogen bond. Various characteristics of the R? Br…CH3 interaction, i.e., binding energies, geometrical parameters and topological properties of the electron density have been determined. The presence of the bond critical points (BCPs) between the bromine atom and methyl radical and the values of electron density and Laplacian of electron density at these BCPs indicate the closed‐shell interactions in the complexes. The single‐electron halogen bonds, which are significantly weaker than the normal halogen bonds, exhibit equally bond strength as compared to the single‐electron hydrogen bond. It has been also found that plotting of the binding energies versus topological properties of the electron density at the BCPs gives two straight lines. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

5.
We present ab initio calculations of transport properties of palladium wires in the presence of hydrogen. Detailed investigations have been conducted with a pure palladium wire and with opening a gap inside the wire in which the transition between point contact regime and tunneling regime occurs. The effect of the presence of hydrogen in the gap is studied for different ranges of the gap size. The hydrogen mediated transport in the contact and tunneling regimes of the gap are analyzed and compared. It is predicted that only in large enough distances the hydrogen presence increases the conductance. The effect of additional hydrogen molecules on the gap is also studied.  相似文献   

6.
7.
李象远  周春  李泽荣 《化学学报》2000,58(2):189-193
以两态模型为基础,用从头算方法,在DZP[所有原子带极化函数的Dunning(9s,5p)/(3s,2p)]基组水平上对四氰基乙烯与四甲基乙烯间的电子转移进行理论计算。通过孤立给体和受体的几何构型优化,计算了给体的电离能和受体的电子亲和能。计算表明,在光诱导电荷分离之后的返回电子转移处于高放热的Marcus反转区。通过碰撞配合物的结构优化和电荷分离处理,在线性反应坐标近似下得到四甲基乙烯-四氰基乙烯配合物电荷分离反应的双势阱,进而获得反应热,键重组能,以及跃迁能。  相似文献   

8.
After the separation of the donor, the aeceptor, and the σ-type bridge from the π-σ-π system, the geometries of biphenyl, biphenyl anion radical, naphthalene, and naphthalene anion radical are optimized, and then the reorganization energy for the intermolecular electron transfer (ET) at the levels of HF/4-31G and HF/DZP is calculated. The ET matrix elements of the self-exchange reactions of the π-σ-π systems have been calculated by means of both the direct calculation based on the variational principle, and the transition energy between the molecular orbitals at the linear coordinate R=0.5. For the cross reactions, the ET matrix element and the geometry of the transition state are determined by searching the minimum energy splitting △_(min) along the reaction coordinate. In the evaluation of the solvent reorganization energy of the ET in solution, the Marcus' two-sphere model has been invoked. A few of ET rate constants for the intramolecular ET reactions for the π-σ-π systems, which contain  相似文献   

9.
The potential energy curves for the lowest (3)Sigma(-), (3)Pi, and (5)Sigma(-) states of the KN molecule have been calculated by the multireference singles and doubles configuration interaction method, including Davidson's corrections for quadruple excitations [MRCI(+Q)]. It is shown that the former two are bound, while the last one is repulsive. The electronic ground state of KN is predicted as (3)Sigma(-) state, although the term energy of the (3)Pi state is very small, 177.3 cm(-1). The binding energy for the (3)Sigma(-) state is evaluated as 0.838 eV, the rotational constant B(0) as 0.250 63 cm(-1), and harmonic frequency as 324.4 cm(-1). The spin-orbit coupling effects between the (3)Sigma(-) and (3)Pi states of KN are evaluated and discussed. The same MRCI(+Q) computational procedures are applied to the isovalent LiN, KC, KO, and KCl to confirm the accuracy of present calculations. Theoretical spectroscopic constants presented here will inspire experimental studies of KN.  相似文献   

10.
Quantum-chemical calculations of neutral and charged ironporphyrin (FeP, FeP+1 and FeP) systems were performed using B3LYP and MP2 methods. It was shown that all ground states of FeP (S = 1), FeP+1 (S = 3/2) and FeP (S = 1/2) systems have C2v symmetry. During the first step of electron transfer process an electron goes to β-LUMO − 1 Fe dyz-orbital of FeP+1. The second electron goes to β-LUMO of FeP which is attributed to π-system of porphyrin ring. The 3s- and 3p-orbitals do not play a significant role in the electron transfer process. The ability of FeP−1 system to form π-dative chemical bond is low. The formation of π–π-complexes is preferable.  相似文献   

11.
After the separation of the donor, the acceptor, and the σ-type bridge from the π-σ-π system, the geometries of biphenyl, biphenyl anion radical, naphthalene, and naphthalene anion radical are optimized, and then the reorganization energy for the intermolecular electron transfer (ET) at the levels of HF/4-31G and HF/DZP is calculated. The ET matrix elements of the self-exchange reactions of theπ-σ-π systems have been calculated by means of both the direct calculation based on the variational principle, and the transition energy between the molecular orbitals at the linear coordinateR = 0.5. For the cross reactions, the ET matrix element and the geometry of the transition state are determined by searching the minimum energy splitting Δmin along the reaction coordinate. In the evaluation of the solvent reorganization energy of the ET in solution, the Marcus’ two- sphere model has been invoked. A few of ET rate constants for the intramolecular ET reactions for the π-σ-π systems, which contain the biphenylyl as the donor and both biphenylyl and naphthyl as the acceptor, have been obtained. Project supported by the National Natural Science Foundation of China (Grant Nos. 29706104 and 29573112), the State Key Laboratory of Theoretical and Computational Chemistry of Jilin University.  相似文献   

12.
The electronic coupling matrix element of electron transfer between donor and acceptor connected with hydrogen bonds has been studied in a model system. The calculated matrix element depends largely on the relative rotational conformation of the electron-donor and electron-acceptor sites and a simple orbital analysis has been presented. Along the approximate proton transfer coordinate, the energy potential is a double well and the matrix element has a single maximum at the center of the double well.  相似文献   

13.
In this work we study current-voltage characteristics in transport molecular junctions with a 1,4-benzene dithiol molecule as a bridge by using different ab initio electron propagator methods such as OVGF and P3 which are both programs in a Gaussian software package. The current-voltage characteristics are calculated for different values of Fermi energy in various basis sets such as 6-311++G(p,d) and cc-pVDZ and are compared with the experimental data. A good agreement is found in almost the entire voltage range. In addition, the results of our calculations indicate that the accuracy of ab initio electron propagator methods is in the range of 0.2-0.3 eV. Since the computational methods are truly ab initio, implying no adjustable parameters, functions, or functionals, the theoretical predictions can be improved only by changing the model of a transport device. The current-voltage characteristics predict peaks, i.e., negative differential resistances, for the various values of Fermi energy. As shown, the origin of the negative differential resistances is related to the voltage dependences of overlap integrals for the active terminal orbitals, expansion coefficients of partial atomic wavefunctions in Dyson orbitals, and the voltage dependences of Dyson poles (ionization potentials). We find that two peak behavior in the current-voltage characteristics can be explained by the anharmonicity of potential energy surfaces. As a result of our studies, we predict that negative differential resistances can be experimentally found by changing a position of Fermi level, i.e., by using different metal electrodes coated by a gold atomic monolayer.  相似文献   

14.
15.
16.
Five different structures of CH5 + and one structure of CH5 are calculated using a gaussian basis both in the SCF approximation and with the inclusion of electron correlation in the independent electron pair approximation (IEPA). While on SCF level the C sstructure of CH5 + has to lowest energy, the energy difference between the C sand C 2vstructures becomes negligible if correlation is included. In contrast to this the approach of a proton to CH4 at large and intermediate distances is most favorable towards a corner of the CH4 tetrahedron which means a structure. The decomposition of CH5 + into CH3 + and H2 requires 20kcal/mol on SCF level and 40 kcal/mol if correlation is included.  相似文献   

17.
Using standard ab initio methods, the electronic structure and optimal geometries of cyclo-(NPX2)3 (X = F, Cl) are investigated at the DZ+P basis set level. Out-of-plane π overlap populations for P-N bonds (evaluated as the contribution of a“2 and e” molecular orbitais) are roughly two times greater than the in-plane gp ones evaluated as half the difference between the gross and net d orbital Mulliken populations on phosphorus belonging to é molecular orbitais.  相似文献   

18.
Ab initio calculations were performed on the N-methylpyridones lithiated on the aromatic ring using a 6-31G* basis set. Whenever the lithium atom is on a carbon adjacent to the carbonylic group, a bridged structure is obtained where lithium is coordinated to both carbon and oxygen; these structures are the most stable isomers. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The harmonic force constants and vibration frequencies of BH3 (which is, not directly accessible to experimental studies) are calculated both in SCF approximation and including correlation in the IEPA-PNO scheme, using a Gaussian basis set. The results are compared with those of related molecules like BH and BH2.
Zusammenfassung Die harmonischen Kraftkonstanten und Schwingungsfrequenzen des BH3 (das experimentellen Untersuchungen nicht unmittelbar zugänglich ist) werden sowohl in der SCF-Näherung als auch unter Einschluß der Elektronenkorrelation in der IEPA-PNO-Näherung mit einer Basis von Gaußfunktionen berechnet. Die Ergebnisse werden mit denen verwandter Moleküle wie BH und BH2 verglichen.

Résumé Les constantes de force et frequences de vibration harmoniques de la molecule BH3 (qui est inaccessible a des etudes experimentales directes) sont calculées dans le cadre des methodes SCF et IEPA-PNO utilisant une base d'orbitales Gaussiennes. On compare les resultats avec ceux obtenus recemment pour des molecules comme BH et BH2.
  相似文献   

20.
SCF and CI calculations were carried out on the ground1A state of HN3. The equilibrium geometry and vibration frequencies were computed. The results point to a planar structure (groupC s) but to a non-linear (170 °) N-N-N conformation. The calculated vibration frequencies are in fair agreement with experimental assignments.The dissociation path of the molecule to NH and N2 products was investigated and compared to the isoelectronic reaction of diazomethane. The dissociation energy of hydrazoic acid is estimated to be about –8 kcal/mole, with a potential barrier to dissociation of about 30 kcal/mole.Boursier IRSIA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号