首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wittig reaction of (1-adamantylmethylidene)triphenylphosphorane (Ph(3)P=CH(1-Ad)) with benzaldehyde was investigated, and the results were compared with those of other ylides. The substituent effect in the reaction of the ylide with benzaldehydes was determined by competition experiments, which gave a Hammett rho value of 3.2. The rho value is much larger than those reported for analogous reactions of Ph(3)P=CH(CH(2))(2)CH(3) (rho = 0.20) and Ph(3)P=CH(CH(3))(2) (rho = 0.59), indicating that the reaction mechanism differs for Ph(3)P=CH(1-Ad) and the other ylides. The cis/trans ratio of the product alkene is 74/26 for the reaction with the parent benzaldehyde and highly depends on the position of the substituent; ortho substituted benzaldehydes gave the trans alkenes up to 90%. Monitoring the reaction by means of (31)P NMR revealed that both cis and trans oxaphosphetane intermediates were formed and that the formation and decomposition of the cis oxaphosphetane are 7-12 times faster than those of the trans oxaphosphetane. From the comparison of the reaction of Ph(3)P=CH(1-Ad) + benzaldehyde with those of Ph(3)P=CH(CH(2))(2)CH(3) + benzaldehyde and benzophenone, and Ph(3)P=CH(CH(3))(2) + benzophenone, it was concluded that all the reactions with these nonstabilized ylides proceed via an electron-transfer mechanism and that the rate-determining step changes from the electron transfer step to that of radical combination when the substrate or ylide becomes more sterically demanding.  相似文献   

2.
With the iron(III) complex of the Halterman iron porphyrin [P*Fe(Cl)] and ethyl diazoacetate (EDA) as catalyst and carbene source, respectively, styrene-type substrates were converted to cyclopropyl esters with high trans/cis ratio (not less than 12) and high enantioselectivity for the trans-isomers (74-86% ee). The isomeric distribution of the cyclopropyl esters so obtained is akin to that obtained from the previously reported Ru(II) counterpart [P*Ru(CO)]. A linear Hammett correlation log(k(X)/k(H)) = sigma(+)rho was observed with rho = -0.57 suggesting the involvement of an electrophilic cyclopropanating species derived from the iron(II) center as the reactive intermediate in the catalytic cycle. This is further supported by a dramatic decrease in the enantioselectivity and trans/cis ratio observed in an experiment of styrene cyclopropanation when the reaction mixture was deliberately exposed to air. Axial ligand effects on the selectivities was also investigated. Substantial improvement in trans/cis ratios could be achieved by addition of organic bases such as pyridine (py) and 1-methylimidazole (MeIm) to the catalytic reaction. The existence of axially ligated iron carbene moieties, [P*Fe(CHCO(2)Et)(py)] and [P*Fe(CHCO(2)Et)(MeIm)], was established by electrospray mass spectrometry. Study of secondary kinetic isotope effect indicated that a more product-like transition state was generated by addition of MeIm.  相似文献   

3.
The hydronium ion-catalyzed hydrolyses of 5-methoxyindene 1,2-oxide and of 6-methoxy-1,2,3,4-tetrohydronaphthalene-1,2-epoxide were each found to yield 75-80% of cis diol and only 20-25% of trans diol as hydrolysis products. The relative stabilities of the cis and trans diols in each system were determined by treating either cis or trans diols with perchloric acid in water solutions and following the approach to an equilibrium cis/trans mixture as a function of time. These studies establish that the trans diol in each system is more stable than the corresponding cis diol. Thus, acid-catalyzed hydrolysis of each epoxide, which proceeds via a carbocation intermediate, yields the less stable cis diol as the major product. Transition-state effects, presumably of a hydrogen-bonding nature, selectively stabilize the transition state for attack of water on the intermediate 2-hydroxy-1-indanyl carbocation leading to the less stable cis diol in this system. Transition-state effects must also be responsible for formation of the less stable cis diol as the major product in the acid-catalyzed hydrolysis of 5-methoxy-1,2,3,4-tetrahydronaphthalene 1,2-epoxide. However, in this system steric effects at the transition state may be more important than hydrogen bonding in determining the cis/trans diol product ratio. The synthesis of 5-methoxyindene 1,2-oxide and a study of its rate of reaction as a function of pH in water and dioxane-water solutions are reported. Both an acid-catalyzed reaction leading to only diol products and a pH-independent reaction yielding 71% of 5-methoxy-2-indanone and 29% of diols are observed; the half-life of its pH-independent reaction in water is only 2.4 s.  相似文献   

4.
The disubstitution effects of X and Y in 1-(Y-phenyl)-3-(X-phenyl)-2,3-dihydro-1H-naphth[1,2-e][1,3]oxazines on the ring-chain tautomerism, the delocalization of the nitrogen lone pair (anomeric effect), and the (13)C NMR chemical shifts were analyzed by using multiple linear regression analysis. Study of the three-component equilibrium B<==>A<==>C revealed that the chain<==>trans (A<==>B) equilibrium constants are significantly influenced by the inductive effect (sigma(F)) of substituent Y on the 1-phenyl ring. In contrast, no significant substituent dependence on Y was observed for the chain<==>cis (A<==>C) equilibrium. There was an analogous dependence for the epimerization (C<==>B) constants of 1-(Y-phenyl)-3-alkyl-2,3-dihydro-1H-naphth[1,2-e][1,3]oxazines. With these model compounds, significant overlapping energies of the nitrogen lone pair was observed by NBO analysis in the trans forms B (to sigma*(C1-C1'), sigma*(C1-C10b), and sigma*(C3-O4)) and in the cis forms C (to sigma*(C1-H), sigma*(C1-C10b), and sigma*(C3-O4)). The effects of disubstitution revealed some characteristic differences between the cis and trans isomers. However, the results do not suggest that the anomeric effect predominates in the preponderance of the trans over the cis isomer. When the (13)C chemical shift changes induced by substituents X and Y (SCS) were subjected to multiple linear regression analysis, negative rho(F)(Y) and rho(F)(X) values were observed at C-1 and C-3 for both the cis and trans isomers. In contrast, the positive rho(R)(Y) values at C-1 and the negative rho(R)(X) values at C-3 observed indicated the contribution of resonance structures f (rho(R) > 0) and g (rho(R) < 0), respectively. The classical double bond-no-bond resonance structures proved useful in explaining the substituent sensitivities of the donation energies and the behavior of the SCS values.  相似文献   

5.
Tetraarylbiladien-ab-ones bearing various substituents (R) in the para position of the phenyl groups were preprared by coupled oxidation of tetraarylporphyrin iron complexes. The yields of 5,10,15-triaryl-19-aroyl-15-hydroxybiladien-ab-ones were 74% (R=H), 85% (R=OMe), 44% (R=COOMe), and 28% (R=CN). Kinetic studies of the iron porphyrin oxidation revealed that the reaction is accelerated by an electron-withdrawing substituent with the Hammett reaction constant rho=0.295. 5,10,15-Triaryl-19-aroyl-15-hydroxybiladien-ab-ones undergo the acid-catalyzed elimination reaction either by acetic acid or by mesoporous silica to afford 5,10,15-triaryl-19-aroylbilatrien-abc-one. The elimination reaction in acetic acid is accelerated by an electron-donating substituent with the Hammett reaction constant rho=-1.48.  相似文献   

6.
Hodges JA  Raines RT 《Organic letters》2006,8(21):4695-4697
[structure: see text] The trans/cis ratio of the amide bond in N-formylproline phenylesters correlates with electron withdrawal by a para substituent. The slope of the Hammett plot (rho = 0.26) is indicative of a substantial effect. This effect arises from a favorable n --> pi interaction between the amide oxygen and ester carbonyl. In a polypeptide chain, an analogous interaction can stabilize the conformation of trans peptide bonds, alpha-helices, and polyproline type-II helices.  相似文献   

7.
The relative (cis, trans) stereoselectivity of the beta-lactam formation is one of the critical issues in the Staudinger reaction. Although many attempts have been made to explain and to predict the stereochemical outcomes, the origin of the stereoselectivity remains obscure. We are proposing a model that explains the relative stereoselectivity based on a kinetic analysis of the cis/trans ratios of reaction products. The results were derived from detailed Hammett analyses. Cyclic imines were employed to investigate the electronic effect of the ketene substituents, and it was found that the stereoselectivity could not be simply attributed to the torquoelectronic model. Based on our results, the origin of the relative stereoselectivity can be described as follows: (1) the stereoselectivity is generated as a result of the competition between the direct ring closure and the isomerization of the imine moiety in the zwitterionic intermediate; (2) the ring closure step is most likely an intramolecular nucleophilic addition of the enolate to the imine moiety, which is obviously affected by the electronic effect of the ketene and imine substituents; (3) electron-donating ketene substituents and electron-withdrawing imine substituents accelerate the direct ring closure, leading to a preference for cis-beta-lactam formation, while electron-withdrawing ketene substituents and electron-donating imine substituents slow the direct ring closure, leading to a preference for trans-beta-lactam formation; and (4) the electronic effect of the substituents on the isomerization is a minor factor in influencing the stereoselectivity.  相似文献   

8.
A couple of radical carbonylations of gem-dihalocyclopropanes 1 using CO and Bu3SnH (formylation) or Bu3Sn(CH2CH=CH2) (allylacylation) successfully proceeded to give trans and cis adducts (2 and 3) with good to excellent stereoselectivity (trans/cis = >99/1-75/25 or 17/83-1/99). The formylation of 2,3-cis-disubstituted 1,1-dihalocyclopropanes enhanced trans selectivity (trans/cis = >99/1-95/5), whereas both 2,3-cis-disubstituted and 2-monosubstituted 1,1-dihalocyclopropanes underwent allylacylation with nearly complete trans selectivity (trans/cis = >99/1). Inherently less reactive gem-dichloro- and bromochlorocyclopropanes than gem-dibromocyclopropanes served as favorable substrates. [reaction: see text].  相似文献   

9.
[reaction: see text] This report details the kinetic responses of nine compounds of type 6 to ring-closing metathesis as promoted by 2 to give the identical product 7. The experimental observations have been subjected to Hammett analysis. The rho value for the composite aromatic derivatives (R = p-XC(6)H(4)-) differs from that of the aliphatic series, although both are negative because electron-donating groups accelerate the reaction.  相似文献   

10.
[reaction: see text] The preparation of 1,3-dimethylindans from 4-(2-bromophenyl)-1-pentene (1) and 2-(2-iodo-1-methylethyl)styrene (2) substrates via radical-mediated cyclization and intramolecular carbolithiation has been investigated. Although cyclization of the radical derived from either substrate proceeds with modest selectivity for the cis-isomer, as does cycloisomerization of the aryllithium derived from substrate 1 (cis/trans approximately 2), intramolecular cyclization of the alkyllithium derived from substrate 2 is a highly cis-selective process (cis/trans = 12).  相似文献   

11.
A computational investigation of the title reaction involving semistabilized (R = Ph) and stabilized (R = CO2Me) sulfur ylides has been performed using DFT methods including a continuum model of solvent. Our results provide support for the generally accepted mechanism and are in very good agreement with observed cis/trans selectivities. This study shows that betaine formation is nonreversible, and that selectivity is thereby determined at the initial addition step, in the case of semistabilized ylides. Our analysis indicates moreover that addition TS structures are governed by the steric strain induced by the N-sulfonyl group, which favors the transoid approach in the case of syn betaine formation and the cisoid mode of addition in anti TSs. The observed low trans selectivity is accounted for by the favorable Coulombic interactions and stabilization by C-H...O hydrogen bonding allowed in the cisoid anti addition TS. In the case of stabilized ylides, the endothermicity of betaine formation combined with the high barrier to ring closure render the elimination step rate- and selectivity-determining. Accordingly, the low cis selectivity observed in stabilized ylide reactions is explained by the lower steric strain in the elimination step generated by the formation of the cis aziridine (as compared to the trans case).  相似文献   

12.
Extensive investigations of asymmetric intermolecular cyclopropanation of terminal alkenes with diazoacetates catalyzed by ruthenium porphyrin [Ru(P*)(CO)(EtOH)] (1, H2P = 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene-9-yl]porphyrin) and the application of catalyst 1 to asymmetric intramolecular cyclopropanation of allylic or homoallylic diazoacetates are described. The intermolecular cyclopropanation of styrene and its derivatives with ethyl diazoacetate afforded the corresponding cyclopropyl esters in up to 98% ee with high trans/cis ratios of up to 36 and extremely high catalyst turnovers of up to 1.1 x 10(4). Examination of the effects of temperature, diazoacetate, solvent, and substituent in the intermolecular cyclopropanation reveals that (i) both enantioselectivity and trans selectivity increase with decreasing temperature, (ii) sterically encumbered diazoacetates N2CHCO2R, such as R = Bu(t), and donor solvents, such as diethyl ether and tetrahydrofuran, are beneficial to the trans selectivity, and (iii) electron-donating para substituents on styrene accelerate the cyclopropanations, with the log(k(X)/k(H)) vs sigma(+) plot for para-substituted styrenes p-X-C6H4CH=CH2 (X = MeO, Me, Cl, CF3) exhibiting good linearity with a small negative rho(+) value of -0.44 +/- 0.09. In the case of intramolecular cyclopropanation, complex 1 promoted the decomposition of a series of allylic diazoacetates to form the cyclopropyl lactones in up to 85% ee, contributing the first efficient metalloporphyrin catalyst for an asymmetric intramolecular cyclopropanation. Both the inter- and intramolecular cyclopropanations were proposed to proceed via a reactive chiral ruthenium carbene intermediate. The enantioselectivities in these processes were rationalized on the basis of the X-ray crystal structures of closely related stable chiral carbene complexes [Ru(P*)(CPh2)] (2) and [Ru(P*)(C(Ph)CO2CH2CH=CH2)] (3) obtained from reactions of complex 1 with N2CPh2 and N2C(Ph)CO2CH2CH=CH2, respectively.  相似文献   

13.
In the presence of a catalytic amount of 3-butyl-4-methylthiazolium bromide, the reaction of benzaldehydes with azobenzene in dichloromethane containing octanethiol and Et(3)N gave the corresponding S-octyl thiobenzoates in good yields. The thiolesters were produced by trapping of the 2-benzoylthiazolium salts with the thiol, which were generated through the azobenzene oxidation of the active aldehydes. This is the first example for the thiolester formation mimicking the function of the pyruvate dehydrogenase complex. An electron-withdrawing substituent at the 4-position of benzaldehyde enhanced the reaction rate. The effect of benzaldehyde substituents on the reaction rate was examined quantitatively on the basis of kinetic measurements, leading to a nonlinear correlation of log(k(obs)) with Hammett's substituent constants (sigma). The origin of the nonlinear Hammett plot was interpreted in terms of a shift in the rate-determining step of the multistep reaction with change of the electronic nature of substituent. Further support for this assumption was given by the observation that the reaction constant (rho) of the Hammett plot for the azobenzene substituent effect on the oxidation rate of 4-bromobenzaldehyde was much smaller than that of 4-cyanobenzaldehyde.  相似文献   

14.
The recent development of structural and functional analogues of the DMSO reductase family of isoenzymes allows mechanistic examination of the minimal oxygen atom transfer paradigm M(IV) + QO M(VI) O + Q with the biological metals M = Mo and W. Systematic variation of the electronic environment at the WIV center of desoxo bis(dithiolene) complexes is enabled by introduction of para-substituted phenyl groups in the equatorial (eq) dithiolene ligand and the axial (ax) phenolate ligand. The compounds [W(CO)2(S2C2(C6H4-p-X)2)2] (54-60%) have been prepared by ligand transfer from [Ni(S2C2(C6H4-p-X)2)2] to [W(CO)3(MeCN)3]. A series of 25 complexes [W(IV)(OC6H4-p-X')(S2C2(C6H4-p-X)2)2]1- ([X4,X'], X = Br, F, H, Me, OMe; X' = CN, Br, H, Me, NH2; 41-53%) has been obtained by ligand substitution of five dicarbonyl complexes with five phenolate ligands. Linear free energy relationships between E1/2 and Hammett constant p for the electron-transfer series [Ni(S2C2(C6H4-p-X)2)2]0,1-,2- and [W(CO)2(S2C2(C6H4-p-X)2)2]0,1-,2- demonstrate a substituent influence on electron density distribution at the metal center. The reactions [WIV(OC6H4-p-X')(S2C2(C6H4-p-X)2)2]1- + (CH2)4SO [W(VI)O(OC6H4-p-X')(S2C2(C6H4-p-X)2)2]1- + (CH2)4S with constant substrate are second order with large negative activation entropies indicative of an associative transition state. Rate constants at 298 K adhere to the Hammett equations log(k([X4,X']/k[X4,H]) = rho(ax)sigma(p) and log(k[X4,X']/k([H4,X']) = 4rho(eq)sigma(p). Electron-withdrawing groups (EWG) and electron-donating groups (EDG) have opposite effects on the rate such that k(EWG) > k(EDG). The effects of X' on reactivity are found to be approximately 5 times greater than that of X (rho(ax) = 2.1, rho(eq) = 0.44) in the Hammett equation. Using these and other findings, a stepwise oxo transfer reaction pathway is proposed in which an early transition state, of primary W(IV)-O(substrate) bond-making character, is rate-limiting. This is followed by a six-coordinate substrate complex and a second transition state proposed to involve atom and electron transfer leading to the development of the W(VI)=O group. This work is the most detailed mechanistic investigation of oxo transfer mediated by a biological metal.  相似文献   

15.
The thermal stereomutations and [1,3] carbon sigmatropic shifts shown by (+)-(1S,2S)-trans-1-(E)-propenyl-2-methylcyclobutane and by (-)-(1S,2R)-cis-1-(E)-propenyl-2-methylcyclobutane in the gas phase at 275 degrees C leading to 3,4-dimethylcyclohexenes have been followed. The reaction-time-dependent data for concentrations and enantiomeric excess values for substrates and [1,3] shift products have been deconvoluted to afford rate constants for the discrete isomerization processes. Both trans and cis substrates react through four stereochemically distinct [1,3] carbon shift paths. For one enantiomer of the trans reactant the relative rate constants are k(si) = 58%, k(ar) = 5%, k(sr) = 33%, and k(ai) = 4%. For a single enantiomer of the cis reactant, k'(si) = 18%, k'(ar) = 11%, k'(sr) = 51%, and k'(ai) = 20%. A trans starting material reacts through orbital symmetry allowed suprafacial,inversion and antarafacial,retention paths to give trans-3,4-dimethylcyclohexenes 63% of the time. A cis isomer reacts to give the more stable trans-3,4-dimethylcyclohexenes through orbital symmetry-forbidden suprafacial,retention and antarafacial,inversionpaths 71% of the time. The [1,3] carbon sigmatropic shifts are not controlled by orbital symmetry constraints. They seem more plausible rationalized as proceeding through diradical intermediates having some conformational flexibility after formation and before encountering an exit channel. The distribution of stereochemical outcomes may well be conditioned by dynamic effects. The thermal stereomutations of the 1-(E)-propenyl-2-methylcyclobutanes take place primarily through one-center epimerizations. For the trans substrate, the relative importance of the three distinction rate constants are k(2) = 48%, k(1) = 34%, and k(12) = 18%. For the cis isomer, k'(2) = 44%, k'(1) = 32%, and k'(12) = 24%. These patterns are reminiscent of ones determined for stereomutations in 1,2-disubstitued cyclopropanes.  相似文献   

16.
The base-mediated intramolecular amination of bromoallenes having an axial chirality is described. The treatment of (4S,aR)-4-alkyl-4-[N-(arylsulfonyl)amino]-1-bromobuta-1,2-dienes with NaH in DMF affords 2,3-cis-2-ethynylaziridines in good to excellent selectivity (2,3-cis:trans = 92:8-99:1). The reaction of (4S,aS)-bromoallenes with NaH/DMF also gives 2,3-cis-2-ethynylaziridines selectively (79:21-91:9). These experimental results have been rationalized by B3LYP density functional calculations together with the 6-31+G(d) basis set and the Onsager solvation model. The transition structures for cis-aziridine formation of both (4S,aR)- and (4S,aS)-bromoallenes in DMF are favored over the corresponding trans transition structures by 4.35 and 1.41 kcal/mol, respectively. Furthermore, the calculations predicted that a less polar solvent gives higher cis selectivity for (4S,aS)-bromoallenes. In fact, improvement of the cis selectivity to 99:1 has been realized by using a less polar solvent such as THF. The cyclization of bromoallenes bearing a beta- or gamma-amino group also affords four- and five-membered azacycles in a highly cis-selective manner.  相似文献   

17.
[reaction: see text] N-Aryl-5,5-diphenyl-4-pentenamidyl radicals (3) were produced by 266 nm laser-flash photolysis of the corresponding N-(phenylthio) derivatives, and the rate constants for the cyclizations of these radicals were measured directly. The 5-exo cyclization reactions were fast (k(c) > 2 x 10(5) s(-1)), and radicals 3 generally behaved as electrophilic reactants with a Hammett correlation of rho = 1.9 for five of the six radicals studied. However, the p-methoxyphenyl-substituted radical 3f cyclized much faster than expected from the Hammett analysis. Variable temperature studies of parent radical 3a (aryl = phenyl) gave an Arrhenius function with log k = 9.2 - 4.4/2.3RT (kcal/mol). The rate constant for the reaction of p-ethylphenyl-substituted anilidyl radical 3b with Bu(3)SnH at 65 degrees C was k(T) = 4 x 10(5) M(-1) s(-1).  相似文献   

18.
Cycloreversion of 4-methoxystyrene from the corresponding Tp'Re(O)(diolato) complex (Tp' = hydrido-tris-(3,5-dimethylpyrazolyl)borate) was measured competitively for various isotopomers at 103 degrees C. Primary ((12)C/(13)C) and secondary ((1)H/(2)H) kinetic isotope effects were determined. The primary KIEs were k(12C)/k(13C) = 1.041 +/- 0.005 at the alpha position and 1.013 +/- 0.006 at the beta position. Secondary KIEs were k(H)/k(D) = 1.076 +/- 0.005 at the alpha position and 1.017 +/- 0.005 at the beta position. Computational modeling (B3LYP/LACVP+) located a transition state for concerted cycloreversion of styrene from TpRe(O)(OCH(2)CHPh) exhibiting dramatically different C-O bond lengths. A Hammett study on cycloreversions of substituted styrenes from a series of Tp'Re(O)(diolato) showed dichotomous behavior for electron donors and electron-withdrawing groups as substituents: rho = -0.65 for electron donors, but rho = +1.13 for electron-withdrawing groups. The data are considered in light of various mechanistic proposals. While the extrusion of 4-methoxystyrene is concluded to be a highly asynchronous concerted reaction, the Hammett study reflects a likelihood that multiple reaction mechanisms are involved.  相似文献   

19.
An efficient desymmetrization of cis-1,3-cyclohexanediol to (1S,3R)-3-(acetoxy)-1-cyclohexanol ((R,S)-2a) was performed via Candida antarctica lipase B (CALB)-catalyzed transesterification, in high yield (up to 93%) and excellent enantioselectivity (ee's up to >99.5%). (R,R)-Diacetate ((R,R)-3a) was obtained in a DYKAT process at room temperature from (1S,3R)-3-acetoxy-1-cyclohexanol ((R,S)-2a), in a high trans/cis ratio (91:9) and in excellent enantioselectivity of >99%. Metal- and enzyme-catalyzed dynamic transformation of cis/trans-1,3-cyclohexanediol using PS-C gave a high diastereoselectivity for cis-diacetate (cis/trans = 97:3). The (1R,3S)-3-acetoxy-1-cyclohexanol (ent-(R,S)-2a) was obtained from cis-diacetate by CALB-catalyzed hydrolysis in an excellent yield (97%) and selectivity (>99% ee). By deuterium labeling it was shown that intramolecular acyl migration does not occur in the transformation of cis-monoacetate to the cis-diacetate.  相似文献   

20.
Second-order rate constants have been determined spectrophotometrically for the reactions of 4-nitrophenyl X-substituted 2-methylbenzoates (2a-e) and Y-substituted phenyl 2-methylbenzoates (3a-e) with alicyclic secondary amines in 80 mol % H(2)O/20 mol % DMSO at 25.0 +/- 0.1 degrees C. The o-methyl group in the benzoyl moiety of 2a-e retards the reaction rate but does not influence the reaction mechanism. The Hammett plots for the reactions of 2a-e are nonlinear, while the corresponding Yukawa-Tsuno plots are linear with large r values (1.06-1.70). The linear Yukawa-Tsuno plots suggest that stabilization of the ground-state through resonance interaction between the electron donating substituent X and the carbonyl group is responsible for the nonlinear Hammett plots, while the large r values imply that the ground-state resonance interaction is significant. The reactions of 2a-e resulted in smaller rho(X) values but larger r values than the corresponding reactions of 4-nitrophenyl X-substituted benzoates (1a-e). The small rho(X) value for the reactions of 2a-e (e.g., rho(X) = 0.22) is suggested to be responsible for the large r value (e.g., r = 1.70). The reactions of 3a-e with piperidine are proposed to proceed in a stepwise manner with a change in the rate-determining step on the basis of the curved Br?nsted-type plot obtained. Microscopic rate constants associated with the reactions of 3a-e are also consistent with the proposed mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号