首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One important issue in waveguide free electron lasers (FELs) involves an interaction of the electron beam with one waveguide mode at two different resonant frequencies. Since the low-frequency mode often has a higher pain, the usually preferred high-frequency mode is suppressed as a result of mode competition. In this paper, possible control of this mode competition is considered using a nonstandard wiggler magnet consisting of two cascaded wiggler sections with different periods and field strengths. It is demonstrated that with an appropriate differentiation between the two wiggler sections the high-frequency mode may be amplified preferentially. This mode-selective amplification may be used to suppress the low-frequency mode. A small signal gain formulation is developed for a waveguide FEL with such a two-sectioned wiggler arrangement and numerical examples are used to demonstrate its applicability to mode control in waveguide FELs. Effects of wiggler field errors and electron energy spread are also considered. It is shown that the requirement for wiggler field errors and electron energy spread in the two-sectioned wiggler arrangement is similar to that in the usual straight wiggler configuration  相似文献   

2.
We have simulated a 3 cm wavelength free-electron laser afterburner (FEL Afterburner) using two sets of parameters: one is for a 3-cm period wiggler and the other is for a 5.4 cm period wiggler. For the 3 cm period wiggler, the input beam energy is 112.5 keV, and for the 5.3 cm period wiggler the beam energy is increased to 290 keV to make the FEL Afterburner operate at the same frequency. It is found, from the simulations, that the FEL Afterburner with a longer period wiggler has a higher power conversion efficiency: larger than 16% $ for the 5.4 cm wiggler while only about 9% for the 3 cm wiggler. It is also shown that to enhance the interaction efficiency in the slow wave cavity, the slow wave number should be a little larger than the sum of the fast wave number and the wiggler wave number  相似文献   

3.
The transformation of an elliptically polarized standing wave in a cavity by a suddenly and uniformly created plasma is discussed. Theoretical expressions for the plasma induced wiggler magnetic field as well as the frequency-upshifted standing wave are derived. By choosing appropriate values of the source wave parameters and plasma parameters, one can get wiggler magnetic field of desired magnitude, direction and wiggler wavelength. A few representative results are discussed.  相似文献   

4.
Detailed experimental studies on sheet relativistic electron beam propagation through a long planar wiggler are reported and compared with numerical simulations. The planar wiggler has 56 periods with a period of 9.6 mm. Typically, the wiggler field peak amplitude is 5 kG. The experimental efforts are focused on controlling the deviation of the beam toward the side edge of the planar wiggler along the wide transverse direction. It is found that a suitably tapered magnetic field configuration at the wiggler entrance can considerably reduce the rate of deviation. The effects of the following techniques on beam transport efficiency are discussed: side focusing, beam transverse velocity tuning at the wiggler entrance, and beam spread limiting. High beam transport efficiency (almost 100%) of a 15-A beam is obtained in some cases  相似文献   

5.
In this article, the propagation of an intense laser pulse through underdense collisional plasma in the presence of planar magnetostatic wiggler is studied. It is shown that the electron density distribution, in the presence of planar wiggler with increasing of the normalized plasma length, increases initially and then reaches a peak for different values of wiggler amplitudes. In addition, it is found that the existence of wiggler field leads to an increase in the electron density distribution and subsequently enhancement of electric field. Moreover, it is observed that by increasing the wiggler field, as a result of the increase of the electron density distribution, the dielectric permittivity constant is reduced. It is seen that while wiggler magnetic field was applied appropriately, the total absorption coefficient in the underdense collisional isothermal magnetized plasma improves. In fact, increase of wiggler magnetic field causes the enhancement of the total absorption coefficient of plasma medium.  相似文献   

6.
《Physics letters. A》1987,122(9):476-478
We discuss the dynamics of the free-electron laser in the high gain Compton regime with a linearly decreasing wiggler wave-length, and give evidence for the possibility of a much greater amplification of an input signal with the selected wiggler geometry over the more traditional uniform wiggler configuration. In addition, our numerical results suggest the existence of an interesting transition in the FEL dynamical evolution.  相似文献   

7.
短波长自由电子激光器电子运动特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王时建  徐勇根  吉驭嫔  徐竟跃  卢宏  刘晓旭  张世昌 《物理学报》2013,62(14):144103-144103
短波长自由电子激光器的电子束在摇摆器中的传输通道长而狭窄, 须得电子具有良好的运动特性, 避免在传输过程中产生横向发散. 本文研究短波长自由电子激光器中超相对论电子在磁场具有横向分布的平面摇摆器中的三维运动特性, 用逐次逼近法推导相对论运动方程的解析表达式, 非线性数值计算模拟传输过程, 采用科尔莫 戈罗夫熵 方法分析运动的稳定性. 结果表明: 摇摆器磁场除使电子做周期性摇摆运动外, 还迭加了偏离轴线的横向漂移运动, 在没有外置的磁场聚焦系统情况下, 电子将偏离轴线横向发散; 但是, 恰当选取电子的横向初始速度, 可有效地防止电子运动的横向发散, 即使没有外置的磁场聚焦系统, 也能在长达10 m 的摇摆器中顺利传输, 横向位移范围不超过0.09 mm, 而且其运动是稳定的. 关键词: 短波长自由电子激光器 平面摇摆器 超相对论电子运动 运动稳定性  相似文献   

8.
Summary The Hamiltonian for an electron travelling through a large-amplitude backward electromagnetic wave, an axial guide magnetic field and radiation field is formulated. Poincaré surface-of-section plots show that this Hamiltonian is non-integrable, and leads to chaotic trajectories. Equilibrium conditions are derived in the limit where the radiation field approaches zero. Compared to conventional FEL, the total energy of the system at pondermotive resonanceE c is large, while the electron's critical energy γc is low for electromagnetic wiggler FEL. Moreover, the threshold wave amplitude (A r=A c) of beam chaoticity is found at lower values of the radiation field amplitude compared to magnetostatic wiggler FEL. Previous features confirmed that electromagnetic wiggler FEL can operate more coherently and more efficiently at moderated particle's energy compared to magnetostatic wiggler FEL.  相似文献   

9.
Electron acceleration in the inverse free electron laser (IFEL) with a helical wiggler in the presence of ion-channel guiding and axial magnetic field is investigated in this article. The effects of tapering wiggler amplitude and axial magnetic field are calculated for the electron acceleration. In free electron lasers, electron beams lose energy through radiation while in IFEL electron beams gain energy from the laser. The equation of electron motion and the equation of energy exchange between a single electron and electromagnetic waves are derived and then solved numerically using the fourth order Runge-Kutta method. The tapering effects of a wiggler magnetic field on electron acceleration are investigated and the results show that the electron acceleration increases in the case of a tapered wiggler magnetic field with a proper taper constant.  相似文献   

10.
It is shown that by combining a laser wave and an electron beam propagating through a plasma inside a wiggler: (i) Electrons can be accelerated to high energies. For usual laser frequencies and wiggler wavelengths, plasma densities are in the range 1015–1016 cm-3. The plasma density fluctuation in the longitudinal wave suffices to obtain electron energies of several hundred MeV over short distances. (ii) High frequency radiation can be amplified.  相似文献   

11.
Employing laser wigglers and accelerators provides the potential to dramatically cut the size and cost of X‐ray light sources. Owing to recent technological developments in the production of high‐brilliance electron beams and high‐power laser pulses, it is now conceivable to make steps toward the practical realisation of laser‐pumped X‐ray free‐electron lasers (FELs). In this regard, here the head‐on collision of a relativistic dense electron beam with a linearly polarized laser pulse as a wiggler is studied, in which the laser wiggler can be realised using a conventional quantum laser. In addition, an external guide magnetic field is employed to confine the electron beam against self‐fields, therefore improving the FEL operation. Conditions allowing such an operating regime are presented and its relevant validity checked using a set of general scaling formulae. Rigorous analytical solutions of the dynamic equations are provided. These solutions are verified by performing calculations using the derived solutions and well known Runge–Kutta procedure to simulate the electron trajectories. The effects of self‐fields on the FEL gain in this configuration are estimated. Numerical calculations indicate that in the presence of self‐fields the sensitivity of the gain increases in the vicinity of resonance regions. Besides, diamagnetic and paramagnetic effects of the wiggler‐induced self‐magnetic field cause gain decrement and enhancement for different electron orbits, while these diamagnetic and paramagnetic effects increase with increasing beam density. The results are compared with findings of planar magnetostatic wiggler FELs.  相似文献   

12.
A three dimensional simulation software system developed to estimate a free electron laser (FEL) gain has been applied to FEL using a standard plane polarized wiggler and an alternately shifted magnet wiggler. It is seen for the latter wiggler that a large filling factor could be selected and each maximum gain corresponding to each orbit of electron beam concentrates at a certain frequency region of FEL radiation. It is, therefore, implied that a proper shift between the adjacent magnets in the wiggler produces the improvement of the FEL gain.  相似文献   

13.
A magnetic wiggler is studied in which each period of the magnetic field is produced by four magnet sections. A wiggler of this type can be used in the ring of an electron synchrotron.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 14–18, April, 1978.  相似文献   

14.
We find that the electron phase with respect to the incident laser radiation must be random in the first freeelectron laser (FEL) and, hence, the incident laser radiation works as a relaxation force to keep a Maxwellian distribution. We formulate the threshold laser intensity for amplification which agrees with the measured value in the order of magnitude in the first FEL. The magnetic wiggler must produce an electric wiggler whose period is the same as that of the magnetic wiggler. We find that net stimulated free-electron two-quantum Stark (FETQS) emission driven by this electric wiggler is the mechanism responsible for the measured gain and the measured laser intensity at the plateau in the first FEL.  相似文献   

15.
The radiation guiding of a plasma wave wiggler free-electron laser (FEL) in the Compton regime was examined. It was found that a Langmuir wave supported by a plasma cylinder acts as a wiggler for the generation of high-frequency coherent radiation when an annular relativistic electron beam passes through it. The radiation mode in the Compton regime tends to be localized close to the radius of the beam. A normal-mode analysis of this process revealed that the growth rate of the instability increases as the square root of the beam current. The treatment presented is restricted to the case where the radial width of the FEL radiation mode is larger than the beam radius, but smaller than the waveguide radius  相似文献   

16.
祝家清 《中国物理》1996,5(9):654-661
The spontaneous and the stimulated radiations, as well as the relationship between them, are calculated for an electron moving in the wiggler with the independent magnetostatic-field on the axial (z) coordinates. It is shown that the Madey's law is still valid in the novel wiggler case. The small signal gain of free-clectron laser is calculated in a novel wiggler.  相似文献   

17.
黄羽  王明常 《光学学报》1997,17(10):394-1397
研究了波荡器磁场增强对提高自由电子激光器效率的影响。模拟计算发现采用磁场增强波荡器能使自由电子激光器的效率提高到17.6%,采用磁场预先增强而后又增弱的锥型波荡器则能获得高达43.3¥的输出效率,自由电子激光器的功率得到进一步的提高。  相似文献   

18.
Amplification of an electromagnetic wave by a free electron laser (FEL) with a helical wiggler and an ion channel with a periodically varying ion density is examined. The relativistic equation of motion for a single electron in the combined wiggler and the periodic ion-channel fields is solved and the classes of possible trajectories in this configuration are discussed. The gain equation for the FEL in the low-gain-per-pass limit is obtained by adding the effect of the periodic ion channel. Numerical calculation is employed to analyse the gain induced by the effects of the non-uniform ion density. The variation of gain with ion-channel density is demonstrated. It is shown that there is a gain enhancement for group I orbits in the presence of a non-uniform ion-channel but not in a uniform one. It is also shown that periodic ion-channel guiding is used to reach the maximum peak gain in a low ion-channel frequency (low ion density).  相似文献   

19.
给出了双双绕螺旋线线极化Wiggler轴线上磁场的积分表达式,以此公式数字模拟此装置端口区的磁场分布,并进行了实验测定,结果表明,端口区磁场峰值突变和对称性均比圆极化好。另一方面,用洛仑兹运动方程,考虑了电子束空间电荷效应,证明此装置对电子束传输有自聚焦能力,给出了电子运动方程,电子束流与Wiggler峰值磁场的关系,数字模拟电子束运动轨迹也表明,此装置能自聚焦传输电子束,有希望应用于线极化自由电子激光实验中。  相似文献   

20.
A nonlinear and non-averaged model of a two-beam free-electron laser (FEL) wiggler that is tapered nonlinearly in the absence of slippage is presented. The two beams are assumed to have different energies, and the fundamental resonance of the higher energy beam is at the third harmonic of the lower energy beam. By using Maxwell's equations and the full Lorentz force equation of motion for the electron beams, coupled differential equations are derived and solved numerically by the fourth-order Runge-Kutta method. The amplitude of the wiggler field is assumed to decrease nonlinearly when the saturation of the third harmonic occurs. By simulation, the optimum starting point of the tapering and the slopes for reducing the wiggler amplitude are found. This technique can be applied to substantially improve the efficiency of the two-beam FEL in the XUV and X-ray regions. The effect of tapering on the dynamical stability of the fast electron beam is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号