首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reduction process of molybdenum in the presence of fulvic acids and phenanthroline was investigated by square-wave voltammetry (SWV). The mixed-ligand complex of molybdenum exhibits a pronounced tendency to adsorb onto the mercury electrode surface. The electrode reaction proceeds as a surface process in which both components of the redox couple are firmly confined to the electrode surface. The kinetics of the electrode reaction is studied utilizing the properties of “split SW peaks” and “quasireversible maximum”. The kinetic parameters obtained with two different square-wave voltammetric methods are in good agreement. In 0.5 mol/L NaCl solution with pH 2.5 the kinetic parameters are: standard rate constant ks=8±2 s−1, cathodic electron transfer coefficient α=0.41±0.05, and number of exchanged electrons n=2. The SW kinetic measurements are confirmed by cyclic voltammetric method.  相似文献   

2.
The electro-oxidation of alternariol monomethyl ether (AME), one of the main metabolites of the Alternaria genus mycotoxins, is studied at 1-dodecanethiol (DDT)-modified gold electrodes, in acetonitrile (ACN) – aqueous phosphate buffer solutions of different pH values, by using cyclic (CV) and square-wave (SWV) voltammetries. The AME voltammetric response at the bare electrode suffers from two drawbacks: it appears at potentials close to the onset of gold oxide formation, and it is hampered by a fouling of the electrode surface due to the accumulation of oxidized products. These shortcomings are circumvented by the use of DDT-coated electrodes, since the intervening monolayer inhibits gold oxide formation and surface passivation by the electrochemical products, without affecting the oxidation kinetics of AME significantly. Diagnostic criteria based on the voltammetric peak parameters show that the electrochemical behavior of AME at the modified electrode is mainly controlled by reactant diffusion from solution, with a weak adsorption of both the mycotoxin and its oxidation products at monolayer defects. Calibration curves were constructed from the AME square-wave voltammetric response and a detection limit of 9.1 × 10−8 mol dm−3 was determined, which is about three times smaller than a previous estimate at platinum and glassy carbon electrodes, and about fifty times smaller than the limit derived from measurements carried out at a polyphenol oxidase-modified carbon paste electrode.  相似文献   

3.
Rate constants of the electrode reaction V(III)+e → V(II) in water+acetone mixtures were determined. In the regions of irreversible and quasi-reversible behaviour we used polarographic and square-wave polarographic measurements, respectively. The values of the constant go through a minimum with increasing concentration of acetone. Following the published data for the Eu(III)/Eu(II) system (H. Elzanowska, Ph. D. Thesis, Warsaw, 1957), this behaviour was explained by the simultaneous reduction of differently solvated ions in the solution where, depending on the degree of electrode coverage, a partial resolvation at the electrode surface can occur. The calculated dependence of the rate constant on the solvent composition is in accord with experimental values.  相似文献   

4.
In this study, two quantitative differential-pulse polarography (DPP) and square-wave voltammetry (SWV) methods were developed to determine total chlorogenic acid (CGA). Studies on this compound involve its reduction at a hanging mercury drop electrode in micellar media—a simple, fast, reliable, and sensitive method. The use of surfactant cationic cetyltrimethylammonium bromide (CTAB) was pivotal to the development of these methods, allowing for satisfactory changes in CGA reduction. The supporting electrolyte which provided the best-defined CGA determination was 0.04-mol L−1 phosphate buffer at pH 6.0 in the presence of CTAB. Based on this use and under optimized conditions, the two new DPP and SWV methods for CGA analysis had detection limits of 2.36 × 10−7 and 1.34 × 10−9 mol L−1, respectively, for a pure standard. Analysis of the standard in the presence of treated instant coffee and mate tea samples allowed for good average recovery rates, ranging from 97.06% to 105.90%.  相似文献   

5.
A comparative study conducted with square-wave voltammetry (SWV) and electrochemical faradaic spectroscopy (EFS) is presented for a reversible electrode reaction of dissolved redox couple in the presence of both Ox and Red components. In agreement with previous studies, the net peak current ΔΨp of the theoretical SW voltammograms is positioned at the formal potential E0′ and does not depend on the concentration ratio c(Ox)/c(Red). However the forward-to-backward peak current ratio is sensitive to the redox state. For very low SW amplitudes, theoretical data imply superior features of EFS over SWV. Theoretical and experimental calibration lines are in good agreement within the interval 0.2≤x(Ox)≤0.8.  相似文献   

6.
Abbas MN  Radwan AA 《Talanta》2008,74(5):1113-1121
A potentiometric lipoate-selective sensor based on mercuric lipoate ion-pair as a membrane carrier is reported. The electrode was prepared by coating the membrane solution containing PVC, plasticizer, and carrier on the surface of graphite electrode. Influences of the membrane composition, pH, and possible interfering anions were investigated on the response properties of the electrode. The sensor exhibits significantly enhanced response toward lipoate ions over the concentration range 1 × 10−7 mol L−1 to 1 × 10−2 mol L−1 with a lower detection limit of (LDL) of 9 × 10−8 mol L−1 and a slope of −29.4 mV decade−1, with S.D. of the slope is 0.214 mV. Fast and stable response, good reproducibility, long-term stability, applicability over a pH range of 8.0–9.5 is demonstrated. The sensor has a response time of ≤12 s and can be used for at least 6 weeks without any considerable divergence in its potential response. The proposed electrode shows good discrimination of lipoate from several inorganic and organic anions. The CGE was used in flow injection potentiometry (FIP) and resulted in well defined peaks for lipoate ions with stable baseline, excellent reproducibility and reasonable sampling rate of 30 injections per hour. The proposed sensor has been applied for the direct and FI potentiometric determination of LA in pharmaceutical preparations and urine; and has been also utilized as an indicator electrode for the potentiometric titration of LA.  相似文献   

7.
A new electroanalytical methodology was developed for the quantification of the phytohormone indole-3-acetic acid (IAA), using a graphite–polyurethane composite electrode (GPU) and the square wave voltammetry (SWV), in 0.1 mol L− 1 phosphoric acid solution (pH 1.6). Analytical curves were constructed under optimized conditions (f = 100 s− 1, a = 50 mV, Ei = 5 mV) and the reached detection and quantification limits were 26 μg L− 1 and 0.2 mg L− 1, respectively. The developed methodology is simple and accurate for the routine determination of IAA. In order to verify the application of the electroanalytical methodology in fortified soil samples without previous treatment, an IAA assay was performed without serious interferences of the soil constituents.  相似文献   

8.
Crystal structure, redox, and magnetic properties for the Pr1−xSrxFeO3−δ solid-solution phase have been studied. Oxidized samples (prepared in air at 900°C) crystallize in the GdFeO3-type structure for 0≤x≤0.80, and probably in the Sr8Fe8O23-type (unpublished) structure for x=0.90. Reduced samples (containing virtually only Fe3+) crystallize as the perovskite aristotype for x=0.50 and 0.67 with randomly distributed vacancies. The Fe4+ content increases linearly in the oxidized samples up to x≈0.70, whereupon it stabilizes at around 55%. Antiferromagnetic ordering of the G type is observed for oxidized samples (0≤x≤0.90) which show decreasing Néel temperature and ordered magnetic moment with increasing x, while the Néel temperature is nearly constant at 700 K for reduced samples. Electronic transitions for iron from an average-valence state via charge-separated to disproportionated states are proposed from anomalies in magnetic susceptibility curves in the temperature ranges 500–600 K and 150–185 K.  相似文献   

9.
18O/16O isotope exchange in combination with SIMS depth profiling was used to investigate oxygen transport in Li2O-deficient single crystalline LiNbO3 in the temperature range 983 ≤ T/K ≤ 1188 at 200 mbar oxygen. Within the limit of experimental error and for the investigated range of temperatures no significant differences between transport parallel and transport perpendicular to the c-axis were found. The following temperature dependencies were determined: for oxygen tracer diffusion D = 6.4 × 10−3exp[−333 kJ/mol/(RT)] m2/s; and for oxygen surface exchange k = 7.8 × 102exp[−288 kJ mol−1/(RT)] m/s. The activation enthalpy obtained for tracer diffusion can be interpreted as the enthalpy of migration of extrinsic oxygen vacancies induced by impurities with lower valency on niobium sites.  相似文献   

10.
A glassy carbon electrode (GCE) was modified with electropolymerization of meso-tetrakis(2-aminophenyl)porphyrin (TAPP) in acetonitrile by cyclic voltammetry (CV). The voltammetric behavior of norepinephrine (NE) in the presence of excess ascorbic acid (AA) was investigated at the modified electrode by cyclic and square wave voltammetry (SWV) in phosphate buffer solution. The modified electrode gave higher selectivity and highly effective electroactivity to NE oxidation in voltammetric measurements of NE in the presence of AA and epinephrine. In pH 7.4 phosphate buffer solution, the peak current increased linearly with the concentration of NE in two concentration ranges of 1.0×10−6 to 5.0×10−5 mol dm−3.  相似文献   

11.
The electrooxidation of 5-amino-1-naphthol in acetonitrile solutions led to the formation of a purplish gray, air-stable, polymeric film (poly(5-amino-1-naphthol), poly(5,1-ANT)), which presents a nonfibrillar morphology, on basal-plane pyrolytic graphite and In-Sn oxide conducting glass (ITO) electrodes. The film showed a reversible, well-defined oxidation-reduction response in both aqueous solutions of pH 1–13 and protic non-aqueous solutions, and was semiconducting. The formal redox potential (Eo') was 0.075 V vs. a sodium chloride saturated calomel electrode in 0.2 M NaClO4 aqueous solution (pH 1.0). The pH dependence of (Eo') suggested that the electrode processes at pH 1-5 and pH 8–13 are 1e − 1H+and 1et- − 2 H+ reactions, respectively. The poly(5,1-ANT) film-coated ITO electrode displayed an electrochromic character: the oxidized form is purplish gray and the reduced one is pale brownish yellow. In addition, based on the electrochemical and IR absorption spectroscopic characterization of the film, some possible candidates for the structures of electroactive moieties of poly(5,1-ANT) are proposed.  相似文献   

12.
The electrochemical surface plasmon resonance (ESPR) technique was used to investigate the electrodeposition of the charge-transfer complex (CTC) generated during electrooxidation of o-tolidine (o-TD) in pH 4.5 Britton–Robinson buffers and the effects of coexisting dermatan sulfate (DS). The peak-type surface plasmon resonance (SPR) responses (versus time) observed in the cyclic voltammetric experiments indicated the precipitation and dissolution of a poorly soluble CTC, an oxidation intermediate, formed during the redox switching of o-TD in a weakly acidic medium. The effects of potential scan rate and solution pH were examined. The height of the peak-type SPR response to the redox switching of the o-TD/CTC “couple” was notably enhanced by the introduction of DS, due to the formation of a mass-enhanced CTC-DS adduct, as also supported by UV–vis spectroelectrochemistry. The SPR signal responded linearly to the DS concentration up to 14 μmol L−1, with a limit of detection (LOD) down to 8 nmol L−1 (S/N = 3). The analytical performance of the ESPR technique was found to be better than that of the quartz crystal microbalance technique with an LOD value of 70 nmol L−1. The CTC-based ESPR assay is recommended as a new, highly sensitive and dynamically surface-regenerated biosensing technology for other species.  相似文献   

13.
Electroanalytical and chromatographic methodologies have been applied for the determination of pentachlorophenol (PCP) and some of its derivatives in real soil samples contaminated by industrial discharge. The analytes were extracted with hexane from soil samples collected at different points of the site and mixed to produce a representative sample. Square wave voltammetry (SWV) experiments were carried out on either a boron-doped diamond (BDD) electrode or a gold ultramicroelectrode (Au-UME) in an analyte composed by the Britton-Robinson (B-R) buffer at pH 5.5 with the direct addition of proper amounts of the extract. The voltammetric responses revealed an irreversible anodic peak at approximately 0.80 V vs. Ag/AgCl with a peak current showing a linear dependence on PCP concentration. This linear relationship yielded a detection limit (DL) of 2×10−8 mol l−1 (or 5.5 μg l−1) for the BDD electrode and 6.9×10−8 mol l−1 (18.4 μg l−1) for the Au-UME, while the independently measured HPLC detection limit was 1.1×10−8 mol l−1 (3.0 μg l−1). The application of electroanalytical and chromatographic methodologies in the analysis of soil extracts revealed, besides the PCP responses, signals for some related molecules such as o-tetrachlorobenzoquinone (o-chloranil), hexachlorobenzene and tetrachlorophenol. Recovering experiments for PCP showed a concentration of 27.5 mg kg−1 for the electroanalytical determinations and 26.8 mg kg−1 for the HPLC analysis, values exceedingly high if considering that the maximum residue limit established for natural waters by the Brazilian Environmental Agency is 10 μg l−1.  相似文献   

14.
A pseudo-first-order catalytic mechanism in which both reactant and product of a redox reaction are strongly immobilized on an electrode surface is theoretically analysed under conditions of square-wave (SWV) and staircase cyclic voltammetry (SCV). A mathematical procedure is developed under diffusionless conditions. The relationships between the properties of the voltammetric response and both the kinetic parameters of the redox reaction and the parameters of the excitation signal are studied. The phenomenon of the quasi-reversible maximum is discussed. A comparative study between SWV and SCV is presented and the limitations and advantages of both techniques, from analytical and kinetic points of view, are discussed. The theoretical predictions are experimentally confirmed by the redox reaction of azobenzene in the presence of hydrogen peroxide as an oxidizing agent. Electronic Publication  相似文献   

15.
This work describes an electroanalytical investigation of dopamine using cyclic voltammetry (CV) and the graphite–polyurethane composite electrode (GPU). In CV studies, well-defined redox peaks characterize the oxidation process at the GPU electrode, which is indicative of electrocatalytic effects associated with active sites on the GPU electrode surface. A new analytical methodology was developed using the GPU electrode and square wave voltammetry (SWV) in BR buffer solution (0.1 mol L–1; pH 7.4). Analytical curves were constructed under optimized conditions (f=60s–1, Ea=50 mV, EI=2 mV) and detection and quantification limits of 6.4×10–8 mol L–1 (12.1 g L–1) and 5.2×10–6 mol L–1 (0.9 mg L–1), respectively, were achieved. The precision of the method was checked by performing ten successive measurements for a 9.9×10–6 mol L–1 dopamine solution. For intra-assay and inter-assay precisions, the relative standard deviations were 1.9 and 2.3%, respectively. In order to evaluate the developed methodology, the determination of dopamine was performed with good sensitivity and selectivity, without the interference of ascorbic acid in synthetic cerebrospinal fluid, which indicates that the new methodology enables reliable analysis of dopamine.  相似文献   

16.
The electrocatalytic oxidation of ascorbate on a ruthenium oxide hexacyanoferrate (RuOHCF) glassy carbon (GC) modified electrode was investigated at pH 6.9 by using rotating disc electrode (RDE) voltammetry. The influence of the systematic variation of rotation rate, film thickness, ascorbate concentration and the electrode potential indicated that the rate of cross-chemical reaction between Ru(III) centres immobilized into the film and ascorbate controls the overall process. The kinetic regime may be classified as a Sk″ mechanism and the second order rate constant for the surface electrocatalytic reaction was found to be 1.56 × 10−3 mol−1 L1 s−1 cm. A carbon fibre microelectrode modified with the RuOHCF film was successfully used as an amperometric sensor to monitor the ascorbate diffusion in a simulated microenvironment experiment.  相似文献   

17.
Single crystals of platinum trichloride were grown for the first time. The IR spectrum of single-crystal PtCl3 was recorded. The pressure of thermal dissociation of PtCl3 was measured by the static method with a quartz membrane-gauge zero-pressure manometer. An approximating equation for the dissociation pressure vs. temperature (540 K ≤ T ≤ 775 K) for the reaction 2 PtCl3(s) → 2 PtCl2(s) + Cl2(g) was found. The enthalpy (123.1±1.7 kJ mol−1) and entropy (183.6±2.8 J mol−1 K−1) for the dissociation of PtCl3(s) were calculated at 298.15 K.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2032–2034, October, 2004.  相似文献   

18.
In this paper a simple and highly sensitive electroanalytical method for the determination of caffeine content using 1,4-benzoquinone modified carbon paste electrode is presented. The method is based on suppression of 1,4-benzoquinone peak current on addition of caffeine. Square-wave and cyclic voltammetric techniques were utilised for the investigation. The 1,4-benzoquinone modified electrode exhibited a well-defined peak with reproducible peak current values for repetitive measurements; and showed a decrease in peak current value with an increase in caffeine content. The result revealed two linear range regions between 0 mmol L−1 and 0.5 mmol L−1 and 0.5 mmol L−1 and 8.0 mmol L−1, with detection limits of 0.3 μmol L−1 and 5.1 μmol L−1, respectively. The method was then successfully applied to the determination of caffeine content in coffee samples. The effects of pH, electrode composition, step potential, pulse amplitude and square-wave frequency on the voltammetric responses were also investigated.  相似文献   

19.
CnS (1 ≤ n ≤ 20) clusters have been investigated by means of the density functional theory. As a general rule, when 1 ≤ n ≤ 17 the energetically most favorable isomers are found to be the linear arrangement of nuclei (Cv) with the sulphur atom at the very end of the carbon chain. The electronic ground state is alternately predicted to be 1+ for odd n or 3 for even n with a conspicuous odd–even effect in the stability of these clusters. The C18S cluster is predicted to have a S-capped monocyclic structure (1A1), but with a low barrier to linearity. On the other hand, C19S and C20S are unambiguously linear in the 1+ and 3 electronic ground states, respectively.  相似文献   

20.
Gold nanoparticles were deposited electrolessly on multiwalled carbon nanotubes (CNTs) via in situ reduction of HAuCl4 by NaBH4. The resulting gold covered nanotubes were immobilised onto the surface of a glassy carbon electrode via evaporation of a suspension in chloroform. Anodic stripping voltammetry was performed with the modified electrode in As(III) solutions. A limit of detection (LOD based on 3σ) of 0.1 μg L−1 was obtained but more importantly a sensitivity of 1985 μA μM−1 was obtained with square wave voltammetry (SWV) in an optimised system with a deposition time of 120 s. These values, particularly the high sensitivity compare favourably with previously reported methods in the area of electrochemical arsenic detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号