首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
热力学排气系统(TVS)技术是一种广泛采用而有效的航天低温推进剂高效贮存手段。结合热力学排气系统,针对常用的液氮、液氧、液氢等低温推进剂进行了节流制冷性能初步分析和计算,为实现采用TVS系统进行低温推进剂的高效贮存奠定了一定基础。  相似文献   

2.
系统的固有频率的研究对流固耦合振动具有重要意义,本文基于等效电路的方法,对低温推进剂加注系统固有频率开展研究,利用MATLAB/SIMULINK仿真软件搭建等效电路进行固有频率求解,最后计算了典型加注系统管路在不同管路参数以及流体物性参数下的系统一阶固有频率,该方法更为直观地获得管路参数和流体物性参数对系统固有频率的影响规律。研究表明,加注系统的固有频率与加注管道长度有关,在管径为0.15 m下当加注管从5 m增加到25 m时其固有频率减小了22.5%,且增加蓄压器后系统的固有频率也会减小。研究结果可为低温推进剂管路设计和减振防护提供技术依据。  相似文献   

3.
在空间零(微)重力环境下,有效地控制储罐压力并尽量减少液体推进剂的排放损失是低温推进剂在轨储存的核心技术任务。空间热力环境引起的热渗透不可避免,它将使得储罐压力持续升高,然而在零重力环境下无法通过类似地面顶部排气的方法来控制压力,其严重后果是大量气液混合物被直接排放至太空。针对这一问题而提出的热力学排气系统(TVS)能够在气液位置不确定的情况下实现少量的单纯气态排放,并且充分利用所排放低温推进剂节流后的热力学焓,从而在双重作用下有效地实现了储罐压力的控制。文中从仿真理论和实验两个方面总结归纳了国外TVS的技术研究历史和现状,涉及液氢、液氧和液态甲烷等低温推进剂以及模拟流体液氮,为我国低温推进剂空间储存相关技术的发展提供参考。  相似文献   

4.
针对卧式液氧贮罐电加热排放过程,对其内部的物理场进行了数值模拟,分析了流体的流动对温度分层的影响以及温度分层现象的成因。研究结果表明,在电加热增压排放过程中,贮罐内部在竖直方向上存在明显的温度分层现象,大体上呈现出了平缓的递增趋势,但是由于加热壁面的扰动及冷热流体之间的换热影响,中间区域出现了比较大的梯度分布,导致了贮罐内部压力的上升。在浮升力的驱动下,贮罐内壁和加热壁面之间的液氧呈现出了近似于封闭腔内自然对流的流动状态,并且随着排放的进行,加热壁面和贮罐内壁之间的漩涡会进一步分裂成更小更复杂的漩涡,呈现出复杂的流动状态。  相似文献   

5.
建立了液体火箭发动机的液氧贮箱与底部预冷回路的数值计算耦合模型,模拟了地面停放过程中贮箱与底部预冷回路的三维非稳态两相流动与传热过程,分析了自然循环预冷条件下液氧贮箱和底部预冷回路中的三维物理场分布及随时间变化规律。结果表明:随着停放时间的增加,液氧的蒸发量增加,停放中后期贮箱内的热传递基本趋于稳定。回流管内的气化导致回流口处的温度一直呈现波动。  相似文献   

6.
液氢/液氧双组元推进剂是我国新一代运载火箭首选的一组低温推进剂。通过对两种低温推进剂的物化特性进行阐述,结合航天发射场的实际应用情况,分析了该组低温推进剂泄漏扩散的危险性,提出了安全预防措施,能够有效提高低温推进剂的使用安全。  相似文献   

7.
针对固体火箭发动机恶劣环境下的高温燃烧测量问题,提出了利用辐射光谱法来开展固体火箭推进剂燃烧温度在线测量的方法,采用200~1 100 nm光纤光谱仪测量了高压实验燃烧器下固体火箭推进剂燃烧火焰辐射光谱,总结了其光谱特性,并基于普朗克定律和光谱拟合方法获得了相应的推进剂燃烧温度,这对固体火箭推进剂燃烧诊断与燃烧机理研究具有重要的参考价值。  相似文献   

8.
冷氦增压系统是低温液体推进系统的关键技术之一。利用仿真软件Sinda/Fluint,对氧箱冷氦增压系统的冷氦气瓶加注过程和系统增压过程进行了基于集总参数法的建模与计算分析。首先,对冷氦气瓶加注过程给出了最优加注流量,并分析了气瓶内温度压力达到稳定所需的时间、冷氦气瓶充气过程瓶内最高温度以及气瓶与周围液氧的传热;其次,针对冷氦增压系统,详细研究了两种气瓶布局条件下,贮箱增压过程中冷氦气瓶温度、压力随时间的变化,以及氧箱内气枕与液氧的温度、压力变化情况;最后,还对增压过程中的氦气流量、传热特性进行了研究。  相似文献   

9.
低温液体输送系统间歇泉现象机理分析与消除措施   总被引:4,自引:0,他引:4  
在低温液体输送系统的垂直管路中有可能发生间歇泉现象 ,对管路系统和液体储存都会产生不利影响。文中从气泡动力学、间歇泉循环过程、管路结构等方面对低温液体输送系统中出现的间歇泉现象进行了机理分析 ,介绍了几种消除间歇泉现象的措施 ,为进一步研究间歇泉现象提供了理论基础  相似文献   

10.
对以液氮为工质的低温贮箱进行了增压实验,气枕压力分别从常压增压至1.93bar、1.53bar、1.21bar,由于实验过程中液位的变化影响,增压速率依次略有下降。建立了贮箱增压数值模型,对1.93bar增压过程进行了模拟分析并与实验值进行了对比。对三组增压实验过程中液氮表面的温度分层情况进行了研究,结果表明液相温度分层主要存在于液氮表面,并且温度分层情况受气枕压力的影响明显,液相主流温度区几乎不随气枕压力变化。  相似文献   

11.
由于低温系统中直立管中喷泉现象对系统的危害有两点 :一是水锤冲击 ,二是系统卸压影响。文中建立了低温直立管两相自然循环流动模型 ,并且对喷泉过程进行数值仿真计算 ,给出汽弹的大小和汽弹涌出管段破灭的时间间隔。数值计算结果为分析低温输液系统安全性提供基础  相似文献   

12.
低温液体流动沸腾数值计算中的动量模拟   总被引:1,自引:0,他引:1  
采用双流体模型计算了液氮在垂直管内的过冷流动沸腾过程,着重考察了相间动量传输模型对数值预测结果准确性的影响。研究表明,相间非曳力,尤其是壁面润湿力对于数值预测的准确性有着决定性的作用。此外,正确地估计沸腾系统中气泡的平均直径对于两相流传输特性的准确预测也有着十分重要的作用。  相似文献   

13.
低温液体管路输送中几个问题的分析   总被引:2,自引:2,他引:0  
对低温液体传输过程中气体置换、预冷过程、竖直管道中间歇泉现象、盲支管填充时和阀门开启时的不稳定现象作了较详细分析,指出了其可能造成的危害,并提出了相应的解决方法。  相似文献   

14.
4M-2000A高温超导电缆制冷系统   总被引:5,自引:2,他引:3  
介绍了我国新研制成的首条双通道热绝缘型 4 M- 2 0 0 0 A高温超导电缆制冷系统。该系统由 G- M制冷机提供制冷量 ,过冷液氮为冷却介质 ,通过液氮泵循环 ,组成一个闭式循环制冷系统。给出了制冷系统的调试结果。系统上装有温度、压力、流量、液位等测量仪表 ,并备有一个减压抽空系统 ,以附加提供制冷量  相似文献   

15.
采用在真空夹层中充注纯度不高的一般工业用 CO2 的方法 ,来研究不同充注压力及不同绝热层材料下低温输送管路中的 CO2 冷凝真空绝热问题 ;分析了 CO2 纯度对绝热层真空度的影响。测量并计算了管路内充满液氮后真空绝热层的真空度、真空绝热层外壁壁温和绝热层的表观导热率。结果表明 ,在低真空绝热夹层中充注工业用 CO2 后 ,得到的真空绝热层绝热效果良好 ,能够满足一般的低温输送管路需求。  相似文献   

16.
低温超导技术将应用于第二代北京正负电子对撞机 (BEPC II)。文中所设计的大型氦低温系统将为第二代北京正负电子对撞机的三个磁体 :超导螺线管磁体、插入四极铁磁体和高频超导腔磁体提供 4 .5 K下 80 0 W的冷量和 6 0 .0 L/ h的液氦产量。由于每个用户都有其特定的工作要求 ,该系统为每个用户配置一个控制杜瓦 ,以满足磁体的工作要求。  相似文献   

17.
本文以液氢温区下的双温区多管道为研究对象, 对其进行了热流分析, 建立了几何模型, 采用有限元方法进行了热-结构耦合分析求解, 分析了不同壁厚及不同支撑宽度下漏热、 应力及形变的变化规律. 研究结果表明: 壁厚减小时, 漏热值减少, 绝热支撑总体应力增加, 支撑形变增大; 宽度减小时,20 K 温区漏热量减少,80 K 温区漏热增加, 总漏热量减少, 支撑应力增大, 最大形变量增大. 最终, 针对某工程使用的双温区四管道, 拟合出了壁厚与漏热、 最大应力及最大形变量变化规律的曲线、 方程, 宽度与双温区漏热、 最大应力及最大形变量变化规律的曲线、 方程. 在应力、 漏热、 形变量均允许的情况下, 得出最薄壁厚可取到1 .576 mm; 在壁厚取为2 mm 时, 得出最小宽度可取为0.572 mm.  相似文献   

18.
低温液体流动沸腾数值计算中的相间传热模型   总被引:1,自引:0,他引:1  
采用双流体模型预测了液氮在垂直管内的流动沸腾过程,着重考察和评价了五个常用的相间传热模型对数值计算结果的影响,找出了最优的相间传热模型;同时,研究还发现相间传热模型对流动压降的预测并无明显影响.  相似文献   

19.
为了对部分流低温流体(液氮)循环泵空化特性进行预测.基于软件ANSYS-FLUENT,计算选用Stardard k-ε湍流模型,Simplec压力耦合方式,进行空化前MRF模型定常计算,添加两相流参数,选取Singhal-et-al空化模型,添加两相参数,考虑液-气密度比对低温流体液氮泵内能量的传递和交换的影响,得到气液动量、质量和能量守恒方程,利用RNG k-ε湍流模型,Simplec压力耦合方式,对不同进液压力条件下,部分流低温流体(液氮)循环泵空化特性进行全流域空化数值计算.进行泵空化特性试验,在额定转速下,随着泵前流体压力的降低呈现的空化性能,数值计算与试验测得的泵头数值最大偏差在10%以内,曲线吻合性较好,泵内流场空化发生伴有显著的压头下降,空化过程增强,空化区变大,液相和汽相相互拖拽能力增强,空化核心区由叶顶背压部分扩散到整个流道,汽液界面不清晰,直至断流.本文采用的计算方法和研究结果为低温流体循环泵内部流体空化的诊断和性能优化提供了一定依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号