首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid-state 17O NMR spectra were obtained at 4.70, 11.75 and 19.60T for potassium hydrogen [17O(4)]dibenzoate (PHB) under both magic-angle spinning and stationary conditions. Spectral analyses yielded both the magnitude and orientation of the 17O chemical shift (CS) tensor and the electric field gradient (EFG) tensor for each of the two chemically distinct oxygen sites in PHB. For the oxygen site that is not involved in hydrogen bonding, the experimental 17O NMR tensors are: delta(iso)=287+/-2 ppm, delta(11)=470+/-5 ppm, delta(22)=380+/-5 ppm, delta(33)=10+/-5 ppm, C(Q)=8.30+/-0.02 MHz, eta(Q)=0.23+/-0.05, alpha=0+/-5 degrees, beta=90+/-5 degrees, and gamma=30+/-5 degrees. For the oxygen site in the short O...H...O hydrogen bond, the experimental 17O NMR tensors are: delta(iso)=213+/-2 ppm, delta(11)=370+/-5 ppm, delta(22)=190+/-5 ppm, delta(33)=80+/-5 ppm, C(Q)=5.90+/-0.02 MHz, eta(Q)=0.55+/-0.05, alpha=5+/-5 degrees, beta=90+/-5 degrees, and gamma=90+/-5 degrees. Extensive quantum mechanical calculations at both restricted Hartree-Fock and density functional theory levels were performed to investigate the effects of an effectively symmetrical O...H...O hydrogen bond on 17O CS and EFG tensors.  相似文献   

2.
We report a solid-state 17O NMR study of the 17O electric-field-gradient (EFG) and chemical shielding (CS) tensors for the carboxyl oxygen in an l-alanine hydrochloride. Using [17O]- and [13C,17O]-L-alanine hydrochlorides, both the magnitudes and the orientations in the molecular frame of the 17O EFG and CS tensors could be determined by the analysis of the 17O magic-angle spinning (MAS) and stationary NMR spectra. For the carbonyl oxygen, the smallest EFG tensor component, V(XX), and the largest EFG component, V(ZZ), roughly lies in the carboxyl molecular plane and the direction of V(XX) is parallel to the dipolar vector between 13C and 17O, that is, the direction of CO bond. The angles between the intermediate EFG component, VYY, and delta33 component, and between delta22 component and VZZ are found to be approximately 10 degrees and 35 degrees , respectively. We also present the results of the quantum chemical calculations for a theoretical hydrogen-bonding model, indicating that hydrogen-bonding strengths make it possible to vary both magnitudes and orientations of the carbonyl 17O EFG tensors in amino acid hydrochlorides.  相似文献   

3.
Cobalt-59 NMR experiments have been carried out on single-crystal and polycrystalline (powder) samples of (+/-)-tris(ethylenediamine)cobalt(III) chloride trihydrate, (+/-)-[Co(en)(3)]Cl(3) x 3H(2)O, and of its dehydrate. In addition, the X-ray crystal structure of the dehydrated sample has been determined. X-ray diffraction measurements confirm a long-held assumption that dehydration has only minor effects on the structure of the [Co(en)(3)](3+) cation. Nevertheless, these small differences have a detectable effect on the 59Co nuclear magnetic resonance properties of these compounds; in particular, the nuclear quadrupole coupling constant, C(Q). Straightforward identification of the c-axis for large single crystals of (+/-)-[Co(en)(3)]Cl(3).3H(2)O and of its dehydrate allowed us to obtain single-crystal 59 Co NMR data by orienting the crystals in an MAS rotor. Data collected on single crystals and polycrystalline samples indicate that C(Q)=-3.05+/-0.05 and -2.80+/-0.05 MHz for the hydrated and dehydrated samples, respectively; the signs have been assigned on the basis of a point charge model. The chemical shift tensor principal components were also determined: for the hydrated sample, delta(perpendicular)=7281+/-2 ppm, delta(parallel)=7004+/-4 ppm and delta(iso)=7189 ppm; for the dehydrated sample, delta(perpendicular)=7288+/-2 ppm, delta(parallel)=7008+/-4 ppm and delta(iso)=7195 ppm. The electric field gradient and chemical shift tensors are axially symmetric, as required by crystal symmetry.  相似文献   

4.
The paramagnetic metallocenes and decamethylmetallocenes (C(5)H(5))(2)M and (C(5)Me(5))(2)M with M=V (S=3/2), Mn (S=5/2 or 1/2), Co (S=1/2), and Ni (S=1) were studied by (1)H and (13)C solid-state MAS NMR spectroscopy. Near room temperature spinning sideband manifolds cover ranges of up to 1100 and 3500 ppm, and isotropic signal shifts appear between -260 and 300 ppm and between -600 and 1640 ppm for (1)H and (13)C NMR spectra, respectively. The isotropic paramagnetic signal shifts, which are related to the spin densities in the s orbital of ligand atoms, were discussed. A Herzfeld--Berger spinning sideband analysis of the ring carbon signals yielded the principal values of the paramagnetic shift tensors, and for metallocenes with a small g-factor anisotropy the electron spin density in the ligand pi system was determined from the chemical shift anisotropy. The unusual features of the (1)H and (13)C solid-state NMR spectra of manganocene were related to its chain structure while temperature-dependent (1)H MAS NMR studies reflected antiferromagnetic interaction between the spin centers.  相似文献   

5.
Prudent analysis of the solid state 13C MAS NMR spectra of polycrystalline K2Pt(CN)4 · 3H2O (KTCP) reveals that in crystals of this compound there are two types of carbon nuclei with slightly different 13C chemical shift tensors, contrary to what is found for the solution NMR spectrum and previous static powder NMR studies on this compound and the high resolution solid state NMR studies on other similar compounds. The 13C MAS spectra measured at different rotor spinning speeds are satisfactorily simulated though the use of a newly developed computer program based on a novel density matrix formulation. The present method is eminently successful even though the spectra are rather complicated because of (1) the relatively large anisotropies of the chemical shift tensors; (2) the high-order dipolar interactions between 13C and 14N nuclei because of the strong quadrupolar coupling constants of 14N nuclei; and (3) the indirect J-coupling between the 13C and 195Pt. The principal elements as well as their orientations of the two 13C chemical shift tensors are evaluated from the spectral simulations.  相似文献   

6.
59Co triple-quantum (3Q) MAS and single-pulse MAS NMR spectra of K3Co(CN)6 have been obtained at 14.1 T and used in a comparison of these methods for determination of small chemical shift anisotropies for spin I = 7/2 nuclei. From the 3QMAS NMR spectrum a spinning sideband manifold in the isotropic dimension with high resolution is reconstructed from the intensities of all spinning sidebands in the 3QMAS spectrum. The chemical shift anisotropy (CSA) parameters determined from this spectrum are compared with those obtained from MAS NMR spectra of (i) the complete manifold of spinning sidebands for the central and satellite transitions and of (ii) the second-order quadrupolar lineshapes for the centerband and spinning sidebands from the central transition. A good agreement between the three data sets, all of high precision, is obtained for the shift anisotropy (delta(sigma) = delta(iso) - delta(zz)) whereas minor deviations are observed for the CSA asymmetry parameter (eta(sigma)). The temperature dependence of the isotropic 59Co chemical shift has been studied over a temperature range from -28 to +76 degrees C. A linear and positive temperature dependence of 0.97 ppm/degree C is observed.  相似文献   

7.
We report the first experimental determination of the carboxylate oxygen electric-field-gradient (EFG) and chemical shielding (CS) tensors in polycrystalline γ-glycine. Analysis of magic-angle spinning (MAS) and stationary 17O NMR spectra of [17O]-γ-glycine obtained at 9.4, 14.1, 16.4, and 18.8 T yields the magnitudes of the 17O EFG and CS tensors and the relative orientations between the two tensors. Extensive quantum chemical calculations at both the restricted Hartree–Fock and density functional levels have been performed to present the absolute tensor orientations in term of the molecular frame. We have demonstrated that 17O NMR tensor information could be unambiguously derived by the multiple field analyses of stationary 17O NMR spectra.  相似文献   

8.
Using residual chemical shift anisotropies (RCSAs) measured in a weakly aligned stem-loop RNA, we examined the carbon chemical shift anisotropy (CSA) tensors of nucleobase adenine C2, pyrimidine C5 and C6, and purine C8. The differences between the measured RCSAs and the values back-calculated using three nucleobase carbon CSA sets [D. Stueber, D.M. Grant, 13C and 15N chemical shift tensors in adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine, J. Am. Chem. Soc. 124 (2002) 10539-10551; D. Sitkoff, D.A. Case, Theories of chemical shift anisotropies in proteins and nucleic acids, Prog. NMR Spectrosc. 32 (1998) 165-190; R. Fiala, J. Czernek, V. Sklenar, Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids, J. Biomol. NMR 16 (2000) 291-302] reported previously for mononucleotides (1.4 Hz) is significantly smaller than the predicted RCSA range (-10-10 Hz) but remains larger than the RCSA measurement uncertainty (0.8 Hz). Fitting of the traceless principal CSA values to the measured RCSAs using a grid search procedure yields a cytosine C5 CSA magnitude (CSAa=(3/2.(delta11(2)+delta22(2)+delta33(2)))1/2=173+/-21 ppm), which is significantly higher than the reported mononucleotide values (131-138 ppm) and a guanine C8 CSAa (148+/-13 ppm) that is in very good agreement with the mononucleotide value reported by solid-state NMR [134 ppm, D. Stueber, D.M. Grant, 13C and (15)N chemical shift tensors in adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine, J. Am. Chem. Soc. 124 (2002) 10539-10551]. Owing to a unique sensitivity to directions normal to the base plane, the RCSAs can be translated into useful long-range orientational constraints for RNA structure determination even after allowing for substantial uncertainty in the nucleobase carbon CSA tensors.  相似文献   

9.
Multinuclear solid-state NMR spectroscopy, employing 29Si MAS,27Al MAS/3Q-MAS and (47,49)Ti wide-line experiments, has been used for the structural characterization of titanium substituted ultra-stable zeolite Y (Ti-USY). 27Al MAS experiments show the presence of aluminum in four (Al(IV)), five (Al(V)), and six (Al(VI)) coordination, whereas the multiplicity within Al(IV) and Al(VI) is revealed by 27Al 3Q-MAS experiments. Two different tetrahedral and octahedral Al environments are resolved and their isotropic chemical shifts (delta(CS)) and second-order quadrupole interaction parameters (P(Q)) have been determined by a graphical analysis of the 3Q-MAS spectra. The emergence of signal with higher intensity at -101 ppm in the 29Si MAS spectrum of Ti-USY samples indicates the possible occurrence of Q4(3Si,1Ti) type silicon environments due to titanium substitution in the faujasite framework. High-field (11.74T) operation, using a probehead specially designed to handle a large sample volume, has enabled the acquisition of 47,49Ti static spectra and identification of the titanium environment in the zeolite. The chemical shielding and electric field gradient tensors for the titanium environment in the zeolite have been determined by a computer simulation of the quadrupolar broadened static 47,49Ti NMR spectra.  相似文献   

10.
The potential of heteronuclear MAS NMR spectroscopy for the characterization of (15)N chemical shift (CS) tensors in multiply labeled systems has been illustrated, in one of the first studies of this type, by a measurement of the chemical shift tensor magnitude and orientation in the molecular frame for the two (15)N sites of uracil. Employing polycrystalline samples of (15)N(2) and 2-(13)C, (15)N(2)-labeled uracil, we have measured, via (15)N-(13)C REDOR and (15)N-(1)H dipolar-shift experiments, the polar and azimuthal angles (θ, psi) of orientation of the (15)N-(13)C and (15)N-(1)H dipolar vectors in the (15)N CS tensor frame. The (θ(NC), psi(NC)) angles are determined to be (92 +/- 10 degrees, 100 +/- 5 degrees ) and (132 +/- 3 degrees, 88 +/- 10 degrees ) for the N1 and N3 sites, respectively. Similarly, (θ(NH), psi(NH)) are found to be (15 +/- 5 degrees, -80 +/- 10 degrees ) and (15 +/- 5 degrees, 90 +/- 10 degrees ) for the N1 and N3 sites, respectively. These results obtained based only on MAS NMR measurements have been compared with the data reported in the literature.  相似文献   

11.
We report the first experimental determination of the carboxylate oxygen electric-field-gradient (EFG) and chemical shielding (CS) tensors in polycrystalline γ-glycine. Analysis of magic-angle spinning (MAS) and stationary 17O NMR spectra of [17O]-γ-glycine obtained at 9.4, 14.1, 16.4, and 18.8 T yields the magnitudes of the 17O EFG and CS tensors and the relative orientations between the two tensors. Extensive quantum chemical calculations at both the restricted Hartree–Fock and density functional levels have been performed to present the absolute tensor orientations in term of the molecular frame. We have demonstrated that 17O NMR tensor information could be unambiguously derived by the multiple field analyses of stationary 17O NMR spectra.  相似文献   

12.
Determination of NMR interaction parameters from double rotation NMR   总被引:1,自引:1,他引:0  
It is shown that the anisotropic NMR parameters for half-integer quadrupolar nuclei can be determined using double rotation (DOR) NMR at a single magnetic field with comparable accuracy to multi-field static and MAS experiments. The (17)O nuclei in isotopically enriched l-alanine and OPPh(3) are used as illustrations. The anisotropic NMR parameters are obtained from spectral simulation of the DOR spinning sideband intensities using a computer program written with the GAMMA spin-simulation libraries. Contributions due to the quadrupolar interaction, chemical shift anisotropy, dipolar coupling and J coupling are included in the simulations. In l-alanine the oxygen chemical shift span is 455 +/- 20 ppm and 350 +/- 20 ppm for the O1 and O2 sites, respectively, and the Euler angles are determined to an accuracy of +/- 5-10 degrees . For cases where effects due to heteronuclear J and dipolar coupling are observed, it is possible to determine the angle between the internuclear vector and the principal axis of the electric field gradient (EFG). Thus, the orientation of the major components of both the EFG and chemical shift tensors (i.e., V(33) and delta(33)) in the molecular frame may be obtained from the relative intensity of the split DOR peaks. For OPPh(3) the principal axis of the (17)O EFG is found to be close to the O-P bond, and the (17)O-(31)P one-bond J coupling ((1)J(OP)=161 +/- 2 Hz) is determined to a much higher accuracy than previously.  相似文献   

13.
Chemical shift referencing in MAS solid state NMR   总被引:7,自引:0,他引:7  
Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than +/-0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported.  相似文献   

14.
We have presented a solid-state 17 O NMR study of [13C, 17 O]-L-alanine. Using the experimental results for the 13C-17 O dipolar vector and Euler angles, the absolute orientations of 17 O chemical shielding (CS) and electric-field-gradient (EFG) tensors with respect to the molecular frame can be determined for L-alanine. The present results suggest that the intermediate EFG tensor components, VYY, lie in the carboxylate plane and parallel to the C-O bond directions, while the least shielded components, delta11, and the intermediate CS tensor components, delta22, roughly lie in the molecular plane and the direction of delta22 components are approximately 38 degrees and 25 degrees off the C-O bonds for O1 and O2, respectively. These results are in reasonable agreement with those of our quantum chemical calculations reported previously.  相似文献   

15.
A two-dimensional solid-state NMR method for the measurement of chemical shift anisotropy tensors of X nuclei (15N or 13C) from multiple sites of a polypeptide powder sample is presented. This method employs rotor-synchronized pi pulses to amplify the magnitude of the inhomogeneous X-CSA and 1H-X dipolar coupling interactions. A combination of on-resonance and magic angle rf irradiation of protons is used to vary the ratio of the magnitudes of the 1H-X dipolar and X-CSA interactions which are recovered under MAS, in addition to suppressing the 1H-1H dipolar interactions. The increased number of spinning sidebands in the recovered anisotropic interactions is useful to determine the CSA tensors accurately. The performance of this method is examined for powder samples of N-acetyl-(15)N-L-valine (NAV), N-acetyl-15N-L-valyl-15N-L-leucine (NAVL), and alpha-13C-L-leucine. The sources of experimental errors in the measurement of CSA tensors and the application of the pulse sequences under high-field fast MAS operations are discussed.  相似文献   

16.
Complex spinning sidebands are observed in magic-angle-spinning (MAS) NMR spectra arising from isolated tightlyJ-coupled spin pairs under slow spinning conditions. Such spinning sidebands are sensitive to the magnitude and relative orientation of the chemical-shift tensors, the dipolar-coupling tensor, and the sign of the indirect spin–spin (J) coupling. We show that it is possible to extract information concerning such NMR parameters from an analysis of the observed spinning sidebands. As an example, numerical simulations are carried out to reproduce observed31P MAS NMR spectra of a phosphole tetramer (1) ando-bis(diphenylphosphino)benzene (2), so that invaluable information concerning the orientations of the phosphorus chemical-shift tensors and the sign ofJ(31P,31P) can be deduced. Simulations are carried out by numerically evaluating the spin-density matrix of the spin system.  相似文献   

17.
We examine the double-quantum magic angle spinning NMR spectra of pairs of 13C nuclei coupled to one or more 14N nuclei. The experimental spectra of 13C(2)-glycine and glycyl-[13C(2)]-glycyl-glycine are used to demonstrate the sensitivity of the spectra to the orientation of 14N quadrupole interaction tensors and to the molecular torsional angles.  相似文献   

18.
A 31P and 13C NMR study of powder and single crystal samples of two phosphoenolpyruvate (PEP) compounds, the tris-ammonium salt monohydrate (NH4)3(PEP)·H2O (1), and the mono-ammonium-salt (NH4)(H2PEP) (2) is presented. The P chemical shielding tensors in 1 are measured by 31P single crystal NMR on four minuscule samples and assigned without ambiguity by exploiting the orientation-dependent 31P-31p dipolar splittings of the resonance lines. The orientation of the 31P chemical shielding tensor is discussed in terms of the C2v — and C3-type distortions of the phosphate PO4-coordination sphere. From 13C MAS NMR experiments with 31P rotary resonance recoupling on polycrystalline powder samples the orientations of the 31P chemical shielding tensors in 1 and 2 are obtained, for 1 in very good agreement with the 31P single crystal NMR results. Only some of the orientational parameters of the three 13C chemical shielding tensors in the PEP moiety of 1 could be derived from 13C MAS NMR experiments with 31P rotary resonance recoupling.  相似文献   

19.
Superslow backbone dynamics of the protein barstar and the polypeptide polyglycine was studied by means of a solid-state MAS 1D exchange NMR method (time-reverse ODESSA) that can detect reorientation of nuclei carrying anisotropic chemical shift tensors. Experiments were performed on carbonyl 13C in polyglycine (natural abundance) and backbone 15N nuclei in uniformly 15N-enriched barstar within a wide range of temperatures in dry and wet powders for both samples. Two exchange processes were observed in the experiments: molecular reorientation and spin diffusion. Experimental conditions that are necessary to separate these two processes are discussed on a quantitative level. It was revealed that the wet protein undergoes molecular motion in the millisecond range of correlation times, whereas in dry protein and polyglycine molecular reorientations could not be detected. The correlation time of the motion in the wet barstar at room temperature is 50-100 ms; the activation energy is about 80 kJ/mol. Previously, protein motions with such a long correlation time could be observed only by methods detecting chemical exchange in solution (e.g., hydrogen exchange). The application of solid-state MAS exchange spectroscopy provides new opportunities in studying slow biomolecular dynamics that is important for the biological function of proteins.  相似文献   

20.
Solid Pb3O4 has been studied with 207Pb nuclear magnetic resonance (NMR) spectroscopy. The 207Pb NMR chemical-shift tensor of the Pb2+ site has principal values of delta11 = 1980 +/- 5 ppm, delta22 = 1540 +/- 5 ppm, and delta33 = -1108 +/- 10 ppm; delta(iso) = 804 +/- 10 ppm. The chemical-shift tensor of the Pb4+ site is axial, with principal values delta(parallel) = -1009 +/- 3 ppm and delta(perpendicular) = 1132 +/- 3 ppm; delta(iso) = -1091 +/- 3 ppm. The Pb4+-Pb2+ scalar coupling constant J(Pb-Pb) = 2.3 +/- 0.1 kHz. The main contribution to the Pb2- chemical-shift anisotropy is proposed to arise from an exchange interaction in the Pb2+-Pb2+ pairs, conventionally regarded as molecular [Pb2]4+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号