首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we investigate the Berry phase in Tavis-Cummings model in the rotating wave approximation. The dipole-dipole interaction between the atoms is considered. The eigenfunctions of the system are obtained and thus the Berry phase is evaluated explicitly in terms of the introduction of the phase shift. It is shown that the Berry phase can be easily controlled by the atom-cavity coupling strength, the cavity frequency detuning, which can be important in applications in geometric quantum computing.  相似文献   

2.
We study the geometric phase of an open two-level quantum system under the influence of a squeezed, thermal environment for both non-dissipative as well as dissipative system-environment interactions. In the non-dissipative case, squeezing is found to have a similar influence as temperature, of suppressing geometric phase, while in the dissipative case, squeezing tends to counteract the suppressive influence of temperature in certain regimes. Thus, an interesting feature that emerges from our work is the contrast in the interplay between squeezing and thermal effects in non-dissipative and dissipative interactions. This can be useful for the practical implementation of geometric quantum information processing. By interpreting the open quantum effects as noisy channels, we make the connection between geometric phase and quantum noise processes familiar from quantum information theory.  相似文献   

3.
In this paper, we investigate the geometric phase of a composite system which is composed of two spin- particles driven by a time-varying magnetic field. Firstly, we consider the special case that only one subsystem driven by time-varying magnetic field. Using the quantum jump approach, we calculate the geometric phase associated with the adiabatic evolution of the system subjected to decoherence. The results show that the lowest order corrections to the phase in the no-jump trajectory is only quadratic in decoherence coefficient. Then, both subsystem driven by time-varying magnetic field is considered, we show that the geometric phase is related to the exchange-interaction coefficient and polar angle of the magnetic field.  相似文献   

4.
Two possible applications of random decoupling are discussed. Whereas so far decoupling methods have been considered merely for quantum memories, here it is demonstrated that random decoupling is also a convenient tool for stabilizing quantum algorithms. Furthermore, a decoupling scheme is presented which involves a random decoupling method compatible with detected-jump error correcting quantum codes. With this combined error correcting strategy it is possible to stabilize quantum information against both spontaneous decay and static imperfections of a qubit-based quantum information processor in an efficient way.  相似文献   

5.
We study the stability under quantum noise effects of the quantum privacy amplification protocol for the purification of entanglement in quantum cryptography. We assume that the E91 protocol is used by two communicating parties (Alice and Bob) and that the eavesdropper Eve uses the isotropic Bužek-Hillery quantum copying machine to extract information. Entanglement purification is then operated by Alice and Bob by means of the quantum privacy amplification protocol and we present a systematic numerical study of the impact of all possible single-qubit noise channels on this protocol. We find that both the qualitative behavior of the fidelity of the purified state as a function of the number of purification steps and the maximum level of noise that can be tolerated by the protocol strongly depend on the specific noise channel. These results provide valuable information for experimental implementations of the quantum privacy amplification protocol.  相似文献   

6.
The decoherence effect on Grover algorithm has been studied numerically through a noise modelled by a depolarizing channel. Two types of error are introduced characterizing the qubit time evolution and gate application, so the noise is directly related to the quantum network construction. The numerical simulation concludes an exponential damping law for the successive probability of the maxima as time increases. We have obtained an allowed-error law for the algorithm: the error threshold for the allowed noise behaves as εth(N) ∼1/N1.1 (N being the size of the data set). As the power of N is almost one, we consider the Grover algorithm as robust to a certain extent against decoherence. This law also provides an absolute threshold: if the free evolution error is greater than 0.043, Grover algorithm does not work for any number of qubits affected by the present error model. The improvement in the probability of success, in the case of two qubits has been illustrated by using a fault-tolerant encoding of the initial state by means of the [[7,1,3]] quantum code.  相似文献   

7.
In the thermodynamic limit, we present an exact calculation of the time dynamics of a central spin coupling with its environment at finite temperatures. The interactions belong to the Heisenberg XY type. The case of an environment with finite number of spins is also discussed. To get the reduced density matrix, we use a novel operator technique which is mathematically simple and physically clear, and allows us to treat systems and environments that could all be strongly coupled mutually and internally. The expectation value of the central spin and the von Neumann entropy are obtained.  相似文献   

8.
Spin interaction Hamiltonians are obtained from the unitary Yang-Baxter -matrix. Based on which, we study Berry phase and quantum criticality in the Yang-Baxter systems.  相似文献   

9.
We develop an information theoretic interpretation of the number-phase complementarity in atomic systems, where phase is treated as a continuous positive operator valued measure (POVM). The relevant uncertainty principle is obtained as an upper bound on a sum of knowledge of these two observables for the case of two-level systems. A tighter bound characterizing the uncertainty relation is obtained numerically in terms of a weighted knowledge sum involving these variables. We point out that complementarity in these systems departs from mutual unbiasededness in two significant ways: first, the maximum knowledge of a POVM variable is less than log (dimension) bits; second, surprisingly, for higher dimensional systems, the unbiasedness may not be mutual but unidirectional in that phase remains unbiased with respect to number states, but not vice versa. Finally, we study the effect of non-dissipative and dissipative noise on these complementary variables for a single-qubit system.  相似文献   

10.
The interaction of two–level atoms with a common heat bath leads to an effective interaction between the atoms, such that with time the internal degrees of the atoms become correlated or even entangled. If part of the atoms remain unobserved this creates additional indirect decoherence for the selected atoms, on top of the direct decoherence due to the interaction with the heat bath. I show that indirect decoherence can drastically increase and even dominate the decoherence for sufficiently large times. I investigate indirect decoherence through thermal black body radiation quantitatively for atoms trapped at regular positions in an optical lattice as well as for atoms at random positions in a cold gas, and show how indirect decoherence can be controlled or even suppressed through experimentally accessible parameters.  相似文献   

11.
Using the methods of quantum trajectories we study effects of dissipative decoherence on the accuracy of the Grover quantum search algorithm. The dependence on the number of qubits and dissipation rate are determined and tested numerically with up to 16 qubits. As a result, our numerical and analytical studies give the universal law for decay of fidelity and probability of searched state which are induced by dissipative decoherence effects. This law is in agreement with the results obtained previously for quantum chaos algorithms.  相似文献   

12.
We study the influence of a contact (or delta) potential on the Aharonov-Bohm scattering of nonrelativistic particles. In general the contact potential has no effect on the scattering as expected. However, when the magnetic flux and the strength of the contact potential take some special values, the Aharonov-Bohm scattering cross-section is manifestly changed. It is shown that these special values correspond to the simultaneous existence of two half-bound states in two adjacent angular momentum channels. Two limiting processes are presented to deal with the singularity of the contact potential and results of the same nature are obtained.  相似文献   

13.
We consider discrete quantum systems coupled to finite environments which may possibly consist of only one particle in contrast to the standard baths which usually consist of continua of oscillators, spins, etc. We find that such finite environments may, nevertheless, act as thermostats, i.e., equilibrate the system though not necessarily in the way predicted by standard open system techniques. Thus, we apply a novel technique called the Hilbert space Average Method (HAM) and verify its results numerically.  相似文献   

14.
We investigate the phonon-induced decoherence and dissipation in a donor-based charge quantum bit realized by the orbital states of an electron shared by two dopant ions which are implanted in a silicon host crystal. The dopant ions are taken from the group-V elements Bi, As, P, Sb. The excess electron is coupled to deformation potential acoustic phonons which dominate in the Si host. The particular geometry tailors a non-monotonous frequency distribution of the phonon modes. We determine the exact qubit dynamics under the influence of the phonons by employing the numerically exact quasi-adiabatic propagator path integral scheme thereby taking into account all bath-induced correlations. In particular, we have improved the scheme by completely eliminating the Trotter discretization error by a Hirsch-Fye extrapolation. By comparing the exact results to those of a Born-Markov approximation we find that the latter yields appropriate estimates for the decoherence and relaxation rates. However, noticeable quantitative corrections due to non-Markovian contributions appear.  相似文献   

15.
It has been recently found that the equations of motion of several semiclassical systems must take into account terms arising from Berry phases contributions. Those terms are responsible for the spin Hall effect in semiconductor as well as the Magnus effect of light propagating in inhomogeneous media. Intensive ongoing research on this subject seems to indicate that a broad class of quantum systems may be affected by Berry phase terms. It is therefore important to find a general procedure allowing for the determination of semiclassical Hamiltonian with Berry Phase corrections. This article presents a general diagonalization method at order ħ for a large class of quantum Hamiltonians directly inducing Berry phase corrections. As a consequence, Berry phase terms on both coordinates and momentum operators naturally arise during the diagonalization procedure. This leads to new equations of motion for a wide class of semiclassical system. As physical applications we consider here a Dirac particle in an electromagnetic or static gravitational field, and the propagation of a Bloch electrons in an external electromagnetic field.  相似文献   

16.
The geometric phase (GP) for bipartite systems in transverse external magnetic fields is investigated in this paper. Two different situations have been studied. We first consider two non-interacting particles. The results show that because of entanglement, the geometric phase is very different from that of the non-entangled case. When the initial state is a Werner state, the geometric phase is, in general, zero and moreover the singularity of the geometric phase may appear with a proper evolution time. We next study the geometric phase when intra-couplings appear and choose Werner states as the initial states to entail this discussion. The results show that unlike our first case, the absolute value of the GP is not zero, and attains its maximum when the rescaled coupling constant J is less than 1. The effect of inhomogeneity of the magnetic field is also discussed.  相似文献   

17.
We have found a manifestation of spin-orbit Berry phase in the conductance of a mesoscopic loop with Rashba spin-orbit coupling placed in an external magnetic field perpendicular to the loop plane. In detail, the transmission probabilities for a straight quantum wire and for a quantum loop made of the same wire have been calculated and compared with each other. The difference between them has been investigated and identified with a manifestation of spin-orbit Berry phase. The non-adiabaticity effects at small radii of the loop have been found as well.  相似文献   

18.
The pairwise entanglement, measured by concurrence and geometric phase in high dimensional free-Fermion lattice systems have been studied in this paper. When the system stays at the ground state, their derivatives with the external parameter show the singularity closed to the phase transition points, and can be used to detect the phase transition in this model. Furthermore our studies show for the free-Fermion model that both concurrence and geometric phase show the intimate connection with the correlation functions. The possible connection between concurrence and geometric phase has been also discussed.  相似文献   

19.
20.
A complete theoretical treatment in many problems relevant to physics, chemistry, and biology requires considering the action of the environment over the system of interest. Usually the environment involves a relatively large number of degrees of freedom, this making the problem numerically intractable from a purely quantum-mechanical point of view. To overcome this drawback, a new class of quantum trajectories is proposed. These trajectories, based on the same grounds as Bohmian ones, are solely associated to the system reduced density matrix, since the evolution of the environment degrees of freedom is not considered explicitly. Within this approach, environment effects come into play through a time-dependent damping factor that appears in the system equations of motion. Apart from their evident computational advantage, this type of trajectories also results very insightful to understand the system decoherence. In particular, here we show the usefulness of these trajectories analyzing decoherence effects in interference phenomena, taking as a working model the well-known double-slit experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号