首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexation of the 18-crown-6 ether (18C6) with glycine (Gly) in mixed H2O-DMSO solvents with the composition of 0.1, 0.2, and 0.25 mole fraction of DMSO (T = 298.15 K) was studied calorimetrically. Thermodynamic characteristics of the reaction of the formation of the molecular Gly18C6 complex (Δr G°, Δr H°, TΔr S°) were calculated from the calorimetric data. It was established that the change in the stability of the Gly18C6 complex is mainly determined by the predominance of the enthalpy component of the Gibbs energy over the entropy component. It was shown during the analysis of the enthalpy contributions of the reagents to the enthalpy of the reaction of the formation of Gly18C6 that the change in the enthalpy of the reaction upon a change the solvent composition was due to changes in the solvation state of 18C6.  相似文献   

2.
Thermochemical properties of crown ether complexes have been studied by simultaneous TG-DTA (thermogravimetric analysis-differential thermal analysis) coupled with a mass spectrometer, DSC (differential scanning calorimetry) and hot stage microscopy (HSM). The examined complexes contain benzylammonium- [BA], (R)-(+)-a-phenylethylammonium- [(R)-PEA], (R)-(+)- and (S)-(-)-a-(1-naphthyl)ethylammonium perchlorate [(R)-NEA and (S)-NEA] salts as guests. In the cases of BA and (R)-PEA an achiral pyridono-18-crown-6 ligand [P18C6], and in the case of (R)-NEA and (S)-NEA a chiral (R,R)-dimethylphenazino-18-crown-6 ligand [(R,R)-DMPh18C6] was used as host molecule to obtain four different crown ether complexes. In all cases, the melting points of the complexes were higher than those of both the host and the guest compounds. The decomposition of the complexes begins immediately after their melting is completed, while the BA and (R)-PEA salts and the crown ether ligands are thermally stable by 50 to 100 K above their melting points. During the decomposition of the salts and the four complexes strongly exothermic processes can be observed which are due to oxidative reactions of the perchlorate anion. Ammonium perchlorate crystals were identified among the decomposition residues of the salts. P18C6 was observed to crystallize with two molecules of water. The studied complexes of P18C6 did not contain any solvate. BA was observed to exhibit a reversible solid-solid phase transition upon heating. The heterochiral complex consisting of (S)-NEA and (R,R)-DMPh18C6 shows a solid-solid phase transition followed by two melting points. HSM observations identified three crystal modifications, two of them simultaneously co-existing. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The influence of composition of H2O-EtOH solvent on the reaction of formation of a molecular complex of 18-crown-6 ether (18C6) with triglycine (3Gly) has been studied at 298.15 K by a thermochemical method. The standard thermodynamic parameters (Δr G°, Δr H°, and TΔr S°) of the reaction of [3Gly18C6] complex formation in water-ethanol (H2O-EtOH) solvents having an EtOH mole fraction of 0.0, 0.1, 0.15, 0.2, 0.25, 0.30, and 0.50 have been calculated from the data of calorimetric measurements performed on a TAM III titration microcalorimeter. It has been found that an increase in EtOH concentration in the mixed solvent results in an increase in stability of [3Gly18C6] and in an enhancement in exothermicity of its formation reaction. The water-ethanol solvent has an analogous effect on the stability and energetics of the reactions of formation of molecular complexes of 18C6 with glycine, D,L-alanine, and L-phenylalanine.  相似文献   

4.
Heat effects of the dissolution of 18-crown-6 ether (18C6) over a wide range of compositions of mixed methanol-acetonitrile solvents are determined via calorimetry at 298.15 K. It is found that passing from methanol to acetonitrile to x AN = 0.6 mole fraction is accompanied by a sharp increase in the exothermicity of 18C6 solvation. It is concluded that a further increase in the aprotic component of a binary mixture leads to no appreciable changes in the enthalpy of solvation of the macrocycle.  相似文献   

5.
The Gibbs energies of transfer of 18-crown-6 ether from water into water-dimethyl sulfoxide (DMSO) solvents (χDMSO = 0.0–0.97 mole fractions) at 298.15 K were determined by the interphase distribution method. Changes in the composition of the aqueous-organic solvent did not cause noticeable changes in the stability of 18-crown-6 ether solvato complexes. Reagent solvation contributions to shifts of complex formation equilibrium between silver(I) and 18-crown-6 ether when water was replaced with dimethyl sulfoxide were analyzed.  相似文献   

6.
The composition and stability of coordination compounds of the anions of maleic (H2L) and succinic (H2Y) acids with copper(II) ions in water-ethanol solutions is studied by means of potentiometric titration at a sodium perchlorate ionic strength of 0.1 and a temperature of 298.15 K. The composition of the water-ethanol solvent was varied from 0 to 0.7 molar parts of ethanol for maleic acid and from 0 to 0.4 molar parts for succinic acid. The stability of monoligand complexes of copper ions with the anions of maleic and succinic acids grows with increase of ethanol concentration from 3.86 to 6.62 for logβCuL and from 2.98 to 6.01 for logβCuY. It is shown that a monotonic rise in stability upon an increase in the content of ethanol in solution is observed, while the values of logβCuL change more sharply. The succinic acid anion forms a stronger complex with copper ions than maleic acid anions do at an ethanol content of 0.4 molar parts. The possibility of the formation of a protonated CuHY+ particle is established.  相似文献   

7.
《Fluid Phase Equilibria》2005,231(1):44-52
Osmotic vapor pressure measurements have been carried out for three ternary systems, H2O + 0.2 m 18-crown-6 + NaBr, H2O + 0.2 m 18-crown-6 + KBr and H2O + 0.2 m 18-crown-6 + CsBr at 298.15 K using vapor pressure osmometry. The concentration of salts was varied between 0.04 and 0.6 m. The measured water activities were used to calculate the activity coefficient of water, 18-crown-6 and mean molal activity coefficients of ions. The lowering of activity coefficients of one component in presence of other is attributed to the existence of host–guest type complex equilibria in solution phase. The Gibbs transfer free energies, which have been calculated using the activity data, were used to estimate the McMillan–Mayer pair and triplet interaction parameters and are compared with that of alkali chlorides reported recently by us using similar studies. The pair interaction parameters, gNE (non-electrolyte–electrolyte interaction coefficient), are used to obtain the thermodynamic equilibrium constant values for 18-crown-6:M+ complexes, which on comparison with alkali chlorides indicate that the counter anions plays a definite role in stabilizing such complexes in solution phase. Sign and the magnitude of triplet interaction parameters (gNNE or gNEE) show that along with electrostatic interactions hydrophobic effects also play an important role in stabilizing the host–guest type complexes.  相似文献   

8.
Thermodynamic data for cesium complexes formation with 18-crown-6 (18C6, L) [Cs(18C6)]+ in N-butyl-4-methyl-pyridinium tetrafluoroborate ([BMPy][BF4], I), in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4], II) and in 1-butyl-3-methylimidazolium dicyanamide ([BMIM][N(CN)2], III) were measured with NMR 133Cs technique at 23–50 °C. The stability of cesium complex in RTILs is estimated to be in the range between water and DMFA. Stability constants for [Cs(18C6)]+ are found to decrease as temperature is increasing. The following values for lgK(Cs+L) and ΔH(Cs+L) at 23 °C are determined: 2.6 (0.3), ?47(1) kJ/mol (RTIL I); 2.8(0.3), ?80(3) kJ/mol (RTIL II) and 3.03 (0.08), ?47(2) kJ/mol (RTIL III). It is demonstrated that enthalpy change promotes complex formation while the corresponding change of entropy is negative and provides decomposition of [Cs(18C6)]+.  相似文献   

9.
Our own and published data on the effect of mixed solvents on the thermodynamic parameters of molecular complexation of 18-crown-6 with glycine, D,L-alanine, and L-phenylalanine in aqueous ethanol, dimethyl sulfoxide, and acetone have been generalized. In all cases, decrease of the water fraction in mixed solvents increases the exothermic effect of complex formation. The change in the reaction enthalpy is determined mainly by variation of the enthalpies of solvation of the molecular complex and 18-crown-6, whereas the contribution of solvation of the amino acid is insignificant.  相似文献   

10.
The heat effects of solution of 18-crown-6 ether were determined calorimetrically over a wide range of water-acetone solvent compositions (298.15 K). The influence of the composition of water-acetone solvents on the enthalpies of complex formation between 18-crown-6 and glycine and solvation of chemical equilibrium participants was studied. It was shown that the factor determining changes in the enthalpy of the reaction was changes in the solvation state of the crown ether.  相似文献   

11.
The formation of 18-crown-6 ether (18C6) complexes with D,L-alanine (Ala) in mixed wateracetone solvents with 0.0, 0.08, 0.17, 0.22, and 0.30 mole fractions of acetone (T = 298.15 K) was investigated by means of calorimetry. Thermodynamic characteristics of the reaction of the molecular [Ala18C6] complex formation (Δr G°, Δr H°, and TΔr S°) were calculated on the basis of calorimetric data. Analysis of solvation contributions of reagents into the enthalpy of the [Ala18C6] formation reaction showed that the changes in the reaction energy when the solvent composition is varied are determined by the changes in the solvate state of 18C6.  相似文献   

12.
The enthalpies of dissolution of dopamine hydrochloride (H2Dop · HCl) in water-ethanol solvents containing from 0 to 0.8 mole fraction of ethanol are measured by calorimetry at 298.15 K. Standard enthalpies of transfer (??tr H °) for the molecular (H2Dop) and cationic (H3Dop+) forms of dopamine from water into binary solvents are calculated from the obtained data. The enthalpies of transfer of H3Dop+ cation are determined from the enthalpies of dissolution of H2Dop · HCl using the familiar method of separating the molar quantities into ionic contributions (Ph4P+ = BPh 4 ? ), and by an original alternative procedure. The effect of the composition of the binary solvent on the solvation of dopamine is considered.  相似文献   

13.
Quaternary ammonium salts 2(RCH2COO)·(2H·DACE)+ were synthesized in up to 98% yield by the reaction of biologically active organylheteroacetic acids (OHA) RCH2COOH with diaza-18-crown-6 ether (DACE).  相似文献   

14.
15.
Crown ethers are preferential solvated by organic solvents in the mixtures of water with formamide, N-methylformamide, acetonitrile, acetone and propan-1-ol. In these mixed solvents the energetic effect of the preferential solvation depends quantitatively on the structural and energetic properties of mixtures. The energetic properties of the mixtures of water with hydrophobic solvents (N,N-dimethylformamide, dimethylsulfoxide, N,N-dimethylacetamide, hexamethylphosphortriamide) counteract the preferential solvation of the crown ether molecules. The effect of the hydrophobic and acid-base properties of the mixture of water with organic solvent on the solvation of 12-crown-4, 15-crown-5, 18-crown-6 and benzo-15-crown-5 ethers was discussed. The solvation enthalpy of one -CH2CH2O- group in water, N,N-dimethylformamide and hexamethylphosphortriamide is equal to −24.21, −16.04 and −15.91 kJ/mol, respectively. The condensed benzene ring with 15-crown-5 ether molecule brings about an increase in the exothermic effect of solvation of the crown ether in the mixtures of water with organic solvent.  相似文献   

16.
The standard real and chemical thermodynamic characteristics of resolvation for magnesium ions in the water-ethanol mixtures of different composition were determined by their Volta potential differences at 298.15 K. Based on our analysis of these characteristics, the regularities and peculiarities of solvation of investigated ions in the mixed solvent were established. It was shown that the energies of ion resolvation in dependence on their crystallographic radii correspond to the series Ba2+< Ca2+ < Cd2+ < Cu2+ < Mg2+ < Al3+.  相似文献   

17.
The influence of the composition of acetonitrile-dimethylsulfoxide solvents on the stability of silver(I) complexes with 18-crown-6 ether was studied potentiometrically. An increase in the concentration of dimethylsulfoxide decreased the stability of the coordination compound. It was shown on the basis of the thermodynamic characteristics of solvation of the reagents that a determining factor of complex formation equilibrium shifts was the solvation effect of the Ag+ ion. An equation was suggested for predicting the stability of silver(I) coordination compounds with crown ethers and pyridine-type ligands in binary mixtures of aprotic solvents from changes in the solvation state of the central ion.  相似文献   

18.
The effect of the composition of an acetonitrile-dimethyl sulfoxide (AN-DMSO) mixed solvent on the stability of silver(I) complexes with 18-crown-6 ether (18C6) is studied by potentiometry. An insignificant increase in the stability of [Ag18C6]+ (0.34 log units) is observed on going from acetonitrile to dimethyl sulfoxide. The effect of solvation on the shift of complex formation equilibrium is considered.  相似文献   

19.
采用半微量相平衡方法研究了三元体系Pr(ClO4)3.3H2O-18C6-C2H5OH在298.15K的溶解度, 测定了饱和溶液的折光率。该体系在298.15K时生成两种化学计量的配合物: Pr(ClO4)3.18C6.3H2O(1)和Pr(ClO4)3.2(18C6).3H2O(2)。制备了两种固态配合物, 用化学分析, IR, DTG和TG研究了配合物的组成和性质, 采用量热法, 测定了298.15K时18C6, 配合物1和2在乙醇中的积分溶解热, 以及Pr(ClO4)3.3H2O在18C6-C2H5OH溶液中的积分溶解热。利用本文设计的热化学循环, 求得了两种配合物的标准生成焓。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号