首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of poly(phenylene ethynylene)- (PPE-) based cationic conjugated polyelectrolytes (CPEs) and oligo(phenylene ethynylene)s (OPEs) with different model lipid membrane systems were investigated to gain insight into the relationship between molecular structure and membrane perturbation ability. The CPE and OPE compounds exhibit broad-spectrum antimicrobial activity, and cell walls and membranes are believed to be their main targets. To better understand how the size, in terms of the number of repeat units, of the CPEs and OPEs affects their membrane disruption activities, a series of PPE-based CPEs and OPEs were synthesized and studied. A number of photophysical techniques were used to investigate the interactions of CPEs and OPEs with model membranes, including unilamellar vesicles and lipid monolayers at the air/water interface. CPE- or OPE-induced dye leakage from vesicles reveals that the CPEs and OPEs selectively perturb model bacterial membranes and that their membrane perturbation abilities are highly dependent on molecular size. Consistent with dye-leakage assay results, the CPEs and OPEs also exhibit chain-length-dependent ability to insert into 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) monolayers. Our results suggest that, for PPE-based CPE and OPE antimicrobials, chain length can be tuned to optimize their membrane perturbation ability.  相似文献   

2.
Negative differential resistance in phenylene ethynylene oligomers   总被引:1,自引:0,他引:1  
The origin of the sharp peak profile (i.e., negative differential resistance, NDR) observed in the I/V curves of three-ring phenylene ethynylene oligomers is a topic of major current interest. Here, quantum-chemical calculations are performed to analyze the evolution of the one-electron structure of an unsubstituted three-ring oligomer under the influence of a static electric field (which models the driving voltage applied in the experiments). The results indicate that the rotation of the central ring of the oligomer induces resonant tunneling processes over a limited voltage range. This can thus be responsible for the NDR signature observed experimentally.  相似文献   

3.
Theoretical investigations of the relative stabilities of helical vs extended forms of phenylene ethynylene oligomers established that MMFF molecular mechanics was more useful than AM1 or DFT for calculating helical structures and for estimating relative energies. At the level of MMFF, theory predicts that for o- or m-oligophenylene ethynylenes, helix formation is enthalpically favored for ester and ether-substituted oligomers. In contrast to simple electron-demand predictions, we predict that the position of substituents can make a substantial difference in the tendency to form helices.  相似文献   

4.
<正>Poly[(methylsilylene ethynylene phenylene ethynylene)-co-(tetramethyldisiloxane ethynylene phenylene ethynylene)]was synthesized by polycondensation reaction of m-diethynylbenzene magnesium reagent with 1,3-dichlorotetramethyldisiloxane and dichloromethylsilane.The copolymer was characterized by FT-IR,~1H NMR,differential scanning calorimetry and thermogravimetric analysis.The results show that the copolymer exhibits good processability and cures at low temperatures.The cured copolymer shows high thermal stability.  相似文献   

5.
We report the synthesis of a series of amphiphilic molecular building blocks that can be self-assembled at the air-water interface to form two- and three-dimensional nanostructures with tunable optoelectronic properties. Compression of these molecular building blocks using the Langmuir-Blodgett method gives rise to monolayer and multilayer thin films with different packing densities and electronic properties that are tunable due to varying pi-pi (hydrophobic) interactions. Depending on the noncovalent interaction between chromophores, we observe a transition toward denser packing with increasing number of phenylene ethynylene repeat units. Additionally, we use quantum-chemical simulations to help determine the excited-state electronic structure, intermolecular interactions, and packing trends. Our results demonstrate that the interplay between dipole-dipole and pi-pi interactions dominates the formation of thin films with various packing densities and determines the associated optical properties.  相似文献   

6.
In this paper, we report the self-assembly, electrical characterization, and surface modification of dithiolated phenylene-ethynylene oligomer monolayers on a Au(111) surface. The self-assembly was accomplished by thiol bonding the molecules from solution to a Au(111) surface. We have confirmed the formation of self-assembled monolayers by scanning tunneling microscopy (STM) and optical ellipsometry, and have studied the kinetics of film growth. We suggest that self-assembled phenylene ethynylene oligomers on Au(111) surfaces grow as thiols rather than as thiolates. Using low-temperature STM, we collected local current-voltage spectra showing negative differential resistance at 6 K.  相似文献   

7.
Jones TV  Blatchly RA  Tew GN 《Organic letters》2003,5(18):3297-3299
[structure: see text] This Letter describes the first published synthesis and characterization of alkoxy-substituted ortho-phenylene ethynylene (o-PE) oligomers. Sonogashira coupling was used to assemble discrete chain lengths, using a key monomer with orthogonal groups. Deprotection or activation allowed stepwise coupling to produce the dimer, trimer, and tetramer, while convergent coupling of appropriately substituted trimers produced the hexamer. The placement of alkoxy side chains renders these oligomers soluble in common organic solvents permitting solution characterization. Absorption and emission spectra of the trimer, tetramer, and hexamer are provided.  相似文献   

8.
Two novel water‐soluble meta‐poly(phenylene ethynylene) (mPPE) copolymers were synthesized and characterized, each contained ester and amine functional groups attached to exohelix positions on the phenylene rings and one contained methoxy endohelix functional groups. Secondary structure formation was investigated for these materials in aqueous solutions using ultraviolet and fluorescence spectroscopy. Additionally, the folding behaviors are reported for the mPPEs and their protected amine precursors in other protic and aprotic solvents. Results indicate that both mPPEs are able to form stable helical structures in water, while only the nonmethoxylated polymer exhibited a helical structure in acetonitrile and several alcohols. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
We previously reported the synthesis and solution characterization of short o-phenylene ethynylene (oPE) foldamers. Proton correlation techniques are not adequate for NMR assignment in these compounds as the ethynylene linkers interrupt proton connectivity. In order to facilitate structural characterization and more fully harness the power of NMR, it is necessary to know the sequence of spin systems along the molecular backbone. For example, spin system assignment is required to unambiguously assign NOE correlations for structural determination of folded forms in solution. Therefore, we developed a method to assign the aromatic spin systems in these compounds using HMBC experiments. This has been performed for tetrameric (Es4), pentameric (Es5), and hexameric (Es6) oligomers and is expected to prove useful for this class of foldamers in general. The proton assignments obtained by this technique have been useful toward confirming the previous hypotheses of helical folding in oPE systems.  相似文献   

10.
Both homo- and heterosequence m-phenylene ethynylene oligomers are synthesized using a conceptually simple iterative solid-phase strategy. Oligomers are attached to Merrifield's resin through a known triazene-type linkage. The phenylene ethynylene molecular backbone is constructed through a series of palladium-mediated cross-coupling reactions. The strategy employs two types of monomers that bear orthogonal reactivity, one being a monoprotected bisethynyl arene and the other being a 3-bromo-5-iodo arene. The catalyst conditions are tailored to the requirements of each monomer type. The monoprotected bisethynyl arene is coupled to the growing chain in 2 h at room temperature using a Pd(I) dimer precatalyst ((t)Bu3P(Pd(mu-Cl)(mu-2-methyl allyl)Pd)P(t)Bu3) in conjunction with ZnBr2 and diisopropylamine. In alternate steps, the resin is deprotected in situ with TBAF and coupled to the 3-bromo-5-iodo arene using the iodo selective Pd(tri-2-furylphosphine)4 catalyst in conjunction with CuI and piperidine; this reaction is also completed in 2 h at room temperature. These cross-coupling events are alternated until an oligomer of the desired length is achieved. The oligomer is then cleaved from the resin using CH(2)I(2)/I(2) at 110 degrees C and purified using preparatory GPC. Using this method, a series of homo- and heterosequence oligomers up to 12 units in length in excellent yield and purity were synthesized on the 100 mg scale. Longer oligomers were attempted; however, deletion sequences were found in oligomers longer than 12 units.  相似文献   

11.
In this contribution, we report the synthesis of chiral all‐conjugated branched poly(phenylene ethynylenes) with a controlled amount of branching. Subsequently, the self‐assembly of these PPEs is studied by means of UV–vis, fluorescence spectroscopy, and DSC and the influence of branching is investigated. Finally, CD‐spectroscopy is used to study the influence of branching and self‐assembly on the chiral expression of these polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 79–84  相似文献   

12.
Jiunn-Jye Hwang  James M. Tour   《Tetrahedron》2002,58(52):10387-10405
The combinatorial synthesis of oligo(phenylene ethynylene) tetramers, both in solution and on solid support, is described. These products are of interest for molecular electronics applications. An iterative sequence, coupling of aryl halides to alkynes under Sonogashira conditions, was used. Five monomers functionalized with electron-donating or electron-withdrawing groups were synthesized, and used to generate a library of 25 trimers in a solution-phase based process. A library of 24 tetramers was prepared by subsequent protodesilylation and coupling with the alligator clip 4-iodo-1-thioacetylbenzene. The solution-phase based sequence was successfully adapted to a higher yielding directed split-and-pool solid-phase process, with average yields of 78–86% for each step over seven steps. A triazene linker group was used to attach the starting monomer to the polymer beads. At the completion of the solid-phase-based process, traceless cleavage of trimers from the resin was achieved by sonication of the resin in 10% HCl/THF solution. The released products were then poised for the final step in the sequence, attachment of the alligator clip.  相似文献   

13.
14.
The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality have been studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro‐optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro‐optical properties which are critical in current and potential uses. This study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonyl PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent, whereas in water and implicit poor solvent, the nonyl side chains are collapsed toward the PPE backbone. Rotation around the aromatic ring is fast and no long range correlations are seen within the backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 582–588  相似文献   

15.
16.
A series of m-phenylene ethynylene oligomers containing nonpolar, (S)-3,7-dimethyl-1-octanoxy side chains have been synthesized and studied. In apolar alkane solvents, oligomers of sufficient length (n > 10) were found to adopt a helical conformation with a large twist sense bias. In contrast, in chloroform the oligomers adopt a random coil conformation. Surprisingly, the strong twist sense bias was determined to be highly time dependent and is partially attributed to intermolecular aggregation.  相似文献   

17.
Circular dichroism spectroscopy has been used to study the self-assembly of two series of m-phenylene ethynylene oligomers in highly polar solvents. The helical conformation of shorter oligomer lengths was found to be stabilized in aqueous acetonitrile solutions, while longer oligomers began to interact intermolecularly. The intermolecular aggregation of the oligomers in aqueous solutions revealed a chain length dependent association that required the presence of a stable helical conformation. Evidence for intermolecular interactions is provided by Sergeants and Soldiers experiments in which the twist sense bias of a chiral oligomer is transferred to an achiral oligomer.  相似文献   

18.
Cruciform oligo(phenylene ethynylene)s (OPEs) with an extended tetrathiafulvalene (TTF) donor moiety (OPE5-TTF and OPE3-TTF) and their simple analogues (OPE5-S and OPE3) without conjugated substituents were used to form high-quality self-assembled monolayers (SAMs) on ultraflat gold substrates. Molecular junctions based on these SAMs were investigated using conducting-probe atomic force microscopy (CP-AFM). The TTF substituent changes the molecular orbital energy levels and decreases the HOMO-LUMO energy gap, resulting in a 9-fold increase in conductance for both TTF cruciform OPEs compared to the unsubstituted analogues. The difference in electrical transport properties of the SAMs was reproduced by the theoretical transport calculations for the single molecules.  相似文献   

19.
We have studied electron transport properties of unsubstituted oligo(phenylene ethynylene) (OPE) (1) and nitro-substituted OPE (2) covalently bound to two gold electrodes. The conductance values of single 1 and 2 are approximately 13 and approximately 6 nS, respectively. In addition to a decrease in the conductance, the presence of the nitro moiety leads to asymmetric I-V characteristics and a negative differential resistance-like (NDR-like) behavior. We have altered the nitro-substituted OPE by electrochemically reducing the nitro group and by varying the pH of the electrolyte. The conductance decreases linearly with the electron-withdrawing capability (i.e., Hammett substituent values) of the corresponding reduced species. In contrast, the conductance of 1 is independent of the pH and the electrode potential.  相似文献   

20.
Using diamine as anchoring group, the self-assembled monolayers (SAMs) based on oligo(phenylene ethynylene)s (OPEs) and cruciform OPEs with an extended tetrathiafulvalene (TTF) (OPE3 and OPE3-TTF) were successfully formed on the Au substrate and then utilized in molecular junctions by conductingprobe atomic force microscopy (CP-AFM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号