共查询到16条相似文献,搜索用时 62 毫秒
1.
对求解无约束规划的超记忆梯度算法中线搜索方向中的参数,给了一个假设条件,从而确定了它的一个新的取值范围,保证了搜索方向是目标函数的充分下降方向,由此提出了一类新的记忆梯度算法.在去掉迭代点列有界和Armijo步长搜索下,讨论了算法的全局收敛性,且给出了结合形如共轭梯度法FR,PR,HS的记忆梯度法的修正形式.数值实验表明,新算法比Armijo线搜索下的FR、PR、HS共轭梯度法和超记忆梯度法更稳定、更有效. 相似文献
2.
由William W.Hager和张洪超提出的一种新的共轭梯度法(简称HZ方法),已被证明是一种有效的方法.本文证明了HZ共轭梯度法在Armijo型线性搜索下的全局收敛性.数值实验显示,在Armijo型线性搜索下的HZ共轭梯度法比在Wolfe线性搜索下更有效. 相似文献
3.
本文提出一种新的无约束优化记忆梯度算法,在Armijo搜索下,该算法在每步迭代时利用了前面迭代点的信息,增加了参数选择的自由度,适于求解大规模无约束优化问题。分析了算法的全局收敛性。 相似文献
4.
本文我们讨论了一簇共轭梯度法,它可被看作是FR法和DY法的凸组合.我们提出了两种Armijo型线搜索,并在这两种线搜索下,讨论了共轭梯度法簇的全局收敛性. 相似文献
5.
一类非精确线性搜索共轭梯度新算法 总被引:4,自引:0,他引:4
本文通过对迭代参数的适当选取,给出了一类共轭梯度新算法。在算法的迭代过程中,迭代方向保持下降性,在一般的非精确线性搜索条件下,算法的全局收敛性得到了证明。 相似文献
6.
本文主要研究了一个新的优化算法.首先,利用给出的新的公式和强Wolfe线搜索,证明了该算法在不要求搜索方向满足共轭性条件下具有充分下降性和全局收敛性;其次,利用目标函数为一致凸函数的假设,证明了该算法具有线性收敛速率;最后,利用数值试验,验证了新算法是有效的、可行的. 相似文献
7.
8.
提出一类求解无约束最优化问题的混合共轭梯度算法,新算法有机地结合了DY算法和HS算法的优点,并采用非单调线搜索技术在较弱条件下证明了算法的全局收敛性.数值实验表明新算法具有良好的计算效能. 相似文献
9.
一种混合的HS-DY共轭梯度法 总被引:19,自引:3,他引:19
本文在HS方法和DY方法的基础上,综合两者的优势,提出了一种求解无约束优化问题的新的混合共轭梯度法.在Wolfe线搜索下,不需给定下降条件,证明了算法的全局收敛性.数值试验表明,新算法较之HS方法和PR方法更加有效. 相似文献
10.
11.
In this paper, a new steplength formula is proposed for unconstrained optimization,which can determine the step-size only by one step and avoids the line search step. Global convergence of the five well-known conjugate gradient methods with this formula is analyzed,and the corresponding results are as follows:(1) The DY method globally converges for a strongly convex LC~1 objective function;(2) The CD method, the FR method, the PRP method and the LS method globally converge for a general, not necessarily convex, LC~1 objective function. 相似文献
12.
13.
共轭梯度法是求解无约束优化问题的一种重要的方法.本文提出一族新的共轭梯度法,证明了其在推广的Wolfe非精确线搜索条件下具有全局收敛性.最后对算法进行了数值实验,实验结果验证了该算法的有效性. 相似文献
14.
15.
研究无约束优化问题的共轭梯度算法,提出了一种计算主要参数的新形式,分析了Wolfe搜索下该算法的全局收敛性. 相似文献
16.
基于传统的Wolfe线搜索,提出了一种新的非精确线搜索.在无需限制参数σ≤1/2的情况下(即盯的取值范围扩展至0<σ<1),证明了FR算法的全局收敛性.数值实验表明了这种线搜索下的FR算法的有效性. 相似文献