首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
液晶微纤原位增强PTFE复合材料抗磨性能与磨损机理   总被引:11,自引:3,他引:8  
将热致型液晶与PTFE混合,用模压烧结法制备出新型原位复合材料,摩擦磨损试验结果表明该复合材料具有优良的抗磨性能,研究表明:液晶在PTFE中以微纤形态存在,能很好地起到承载作用,并有利于偶件表面薄而瓣转移膜的形成,从而改善复合材料的摩擦学性能并减轻偶件表面的损伤,液晶含量较低时,复合材料的磨损机理主要为擦伤与粘着,液晶含量较高时,其磨损机理主要为疲劳剥落。  相似文献   

2.
3.
4.
Al2O3+PTFE复合材料滑动摩擦磨损的研究   总被引:5,自引:0,他引:5  
  相似文献   

5.
金属纤维增强PTFE基复合材料的摩擦学性能   总被引:17,自引:5,他引:17  
研究了钢纤维、铜纤维及二者混杂增强聚四氟乙烯基复合材料的摩擦学性能,用扫描电子显微镜观察了复合材料的磨损表面形貌.结果表明:分别以这2种金属纤维增强都能大幅度降低聚四氟乙烯的磨损,钢纤维的增强效果比铜纤维的好,2种纤维混杂增强的效果比单一纤维增强的更好;增强纤维支承负荷、抑制磨损表面龟裂是其改善聚四氟乙烯抗磨性的主要机理.  相似文献   

6.
为了研究表面织构对聚四氟乙烯(PTFE)复合材料摩擦磨损性能的影响规律及其作用机理,采用BBD响应面法对试验进行设计与分析,利用LSR-2M往复摩擦试验机测试了复合材料的摩擦学性能,建立了织构参数与摩擦系数和体积磨损率之间的二次回归模型,研究了槽宽、间距和角度参数及其交互作用对复合材料摩擦学性能的影响.结果表明:二次回归模型显著,拟合精度分别为82.9%和83.2%,预测出槽宽323.2μm、间距295.4μm、角度88.7°时摩擦系数存在最小值0.147,槽宽331.1μm、间距307.6μm、角度87.6°时体积磨损率存在最大值8.11×10-5 mm3/(Nm);织构增大了初始摩擦系数和体积磨损率,但有利于储存磨屑,在接触应力作用下磨屑中的纳米粒子与槽底及侧面的粗糙峰形成了机械互锁,提高了磨屑的附着力,促进了转移膜的生成.  相似文献   

7.
反应烧结碳化硅复合材料的磨损机理研究   总被引:1,自引:3,他引:1  
采用销-盘摩擦磨损试验机考察了反应烧结碳化硅及含Ni碳化硅复合材料在不同温度下的干摩擦磨损性能。结果表明,Ni有利于改善反应烧结碳化硅复合材料的摩擦磨损性能。SEM磨损表面和亚表面分析表明,复合材料在常温下的磨损机理为削和犁沟;600℃下反应烧结碳化硅的磨损机理为表面裂纹形成及断裂;而含Ni碳化硅复合材料的磨损机理为亚表面裂纹扩展导致表面局部剥落。  相似文献   

8.
研究了铜包石墨和铜/石墨混合填充PTFE基复合材料的微观结构、力学性能及摩擦学特性.结果表明,铜包石墨填充PTFE复合材料的抗压缩性能、抗拉伸性能以及耐磨性能均优于铜/石墨混合填充PTFE复合材料,其原因在于铜包石墨既增强了填料与PTFE的界面结合强度,又保证了PTFE连续相的完整性.此外,石墨表面铜包敷层的结构疏松、晶粒细小,有利于提高转移膜的结合强度并减轻摩擦过程中对偶材料的损伤  相似文献   

9.
铜包石墨填充PTFE基复合材料摩擦学特性的研究   总被引:10,自引:6,他引:4  
研究了铜包石墨和铜/石墨混合填充PTFE基复合材料的微观结构、力学性能及摩擦学特性。结果表明,铜包石墨填充PTFE复合材料的抗压缩性能、抗拉伸性能以及耐磨性能均伏于铜/石墨混合填充PTFE复合材料,其原因在于铜包石墨既增强了填料与PTFE的界面结合强度,又保证了PTFE连续相的完整性。此外,石墨表面铜包敷层的结构疏松、晶粒细小,有利于提高转称膜的结合强度并减轻摩擦过程中对偶材料的损伤。  相似文献   

10.
PTFE基超声电机摩擦材料磨合阶段摩擦磨损特性研究   总被引:1,自引:1,他引:0  
在超声电机运行200 h时间内,对超声电机的运行参数进行监测,采用激光共聚焦显微镜对定、转子表面粗糙度、表面形貌和磨屑特征等进行观察分析,探讨超声电机磨合期的时间及磨合期、稳定期的摩擦磨损特性.结果表明:1经过80 h磨合后,超声电机性能基本稳定.2磨合初期,摩擦材料磨损形式以黏着磨损为主,在定子表面可观测到尺寸较大的片状磨屑,进入摩擦稳定期后摩擦材料表面出现大量点蚀凹坑,表面疲劳磨损成为磨损形式之一,磨粒磨损始终存在并占重要部分;定子表面可观测到明显犁沟,磨损形式以磨粒磨损为主.3由于超声振动的存在,摩擦产生的磨屑不易在摩擦表面停留,进入稳定期后在摩擦界面难以观测到磨屑的大量存在,超声振动有排除磨屑的作用.  相似文献   

11.
为了改善地面机械触土部件的减粘脱土状况,制备了石英砂颗粒增强超高分子量聚乙烯基复合材料,并对其磨粒磨损性能作了试验研究.运用正交试验方法分析了磨料粒度、载荷和速度及这三者的交互作用对材料耐磨性的影响,得出了回归方程.结果表明,载荷对纯超高分子量聚乙烯磨损的影响最大,载荷越高,磨损越严重;在颗粒增强复合材料体系中,磨料粒度对磨损的影响最大.这表明引入硬质点提高材料表层的硬度和抗犁切能力是耐磨性提高的主要原因.  相似文献   

12.
本文中采用滑动磨损试验方法研究了以PbO和WS2为润滑组元的复合材料与440C不锈钢配副在25~600℃温度范围内的摩擦磨损特性.通过X射线衍射仪分析发现复合材料中含有铬的硫化物等高温润滑物质生成.使用扫描电镜和金相显微镜进一步分析了材料摩擦表面形貌.结果表明:在500 ~ 600℃范围内,PbWO4、CrxSx+1等各种金属化合物在摩擦表面形成了较完整的润滑膜,产生了自润滑能力,具有优良的减摩耐磨性能.润滑膜材料可向摩擦对偶表面转移,在一定程度上阻止了复合材料与440C不锈钢对摩材料的直接接触,显著降低了材料摩擦系数和磨损率,实现了高温自润滑性能.本文进一步探索了单一润滑组元润滑膜和两种润滑组元润滑膜的承载能力,发现两种固体润滑组元产生的协同润滑效应显著改善了润滑膜的润滑性能.  相似文献   

13.
Al_2O_3+PTFE(+PPS)复合材料滑动摩擦磨损的研究   总被引:2,自引:1,他引:2  
作者采用冷压-烧结工艺研制了Al_2O_3+PTFE、PTFE+PPS和Al_2O_3+(PTFE+PPS)3类复合材料,并对这些材料的摩擦磨损行为及其磨损机理进行了研究。结果表明,适量Al_2O_3粒子的弥散可以明显提高复合材料的耐磨性,PTFE+PPS复合材料的耐磨性远比PTFE的好,摩擦系数几乎与PTFE的相同,是一种良好的减摩抗磨材料。复合材料的磨损过程主要受粘着、犁削和塑性流动机制的控制。  相似文献   

14.
碳纤维增强纸基摩擦材料磨损机理研究   总被引:3,自引:3,他引:3  
以碳纤维为主要增强纤维,采用湿法工艺制备出1种纸基摩擦材料.研究了不同制动次数条件下样品的摩擦磨损行为,通过分析不同制动次数后样品磨损表面的粗糙度特征、三维轮廓形貌、微观形貌和热失重过程,探讨了碳纤维增强纸基摩擦材料的磨损机理.结果表明:随着制动次数的增加,磨损表面粗糙度大幅度降低,材料磨损过程经历了从"跑合磨损"到"稳定磨损"的转变;材料在磨损过程中微凸体逐渐被磨平,孔隙逐渐被填充,表现出疲劳磨损的特征;磨损后样品表层的热重曲线在320~450℃之间出现了新的剧烈失重峰,表明产生了热磨损;但是磨粒磨损的特征并不明显.  相似文献   

15.
为分析基体性质和纤维铺设方式对碳纤维树脂基复合材料(CFRP)压缩性能的影响,设计两种基体(耐高温环氧树脂基体和PA6 基体) 和两种碳纤维铺设方式[[45/0/-45/90]s和[45/-45]2s],共4 类盒型碳纤维试件.采用轴向压缩实验,研究低应变速率下碳纤维复合材料的极限载荷、压缩量和刚度等力学性能.研究表明试件的失效形式主要由基体性质决定,损伤区域及裂纹方向主要由碳纤维铺设方式决定.利用X射线显微镜(XRM)对试件典型的损伤区域进行三维扫描,并对扫描图像进行重构与渲染,获得破坏区域的内部损伤细节.根据损伤扫描结果,得到材料内部的损伤类型及破坏程度.归纳所获得的损伤测试特征,分析不同类型试件压缩时的损伤规律与失效机理.  相似文献   

16.
对比考察了聚苯酯(Ekonol)和PAB纤维增强PTFE复合材料在干摩擦和液氮介质中的摩擦磨损性能,利用扫描电子显微镜观察分析在干摩擦和液氮条件下Ekonol/PAB纤维增强PTFE复合材料的磨损表面形貌及其磨损机理,同时还考察了温度对复合材料冲击韧性的影响.结果表明:在液氮条件下,PTFE的抗犁削能力增强,Ekonol/PAB/PTFE复合材料的磨损量明显比干摩擦下低,复合材料的摩擦系数比干摩擦下大,载荷对复合材料的磨损量影响较小,复合材料的摩擦系数和磨损量随着滑动速度增加基本保持不变,材料的磨损机理主要为轻微犁削和脆性断裂;而在干摩擦条件下,载荷对复合材料的磨损量影响显著,随着滑动速度增加,复合材料的摩擦系数先增后减,磨损量逐渐增大,材料的磨损机理主要以犁削、粘着磨损及疲劳磨损为主.在2种试验条件下复合材料的摩擦系数均随载荷增加而减小;低温时材料的冲击韧性约为常温时的1/2.  相似文献   

17.
在恒定的负荷和不同的滑动速度下,添加各种填料的聚四氟乙烯复合材料栓对对钢盘进行了摩擦试验以测定其摩擦磨损性能和研究影响填料减磨机理的因素。实验表明,聚四氟乙烯基复合材料的摩擦性能一般与填料的种类无关。加入适当大小的纤维状及颗粒状填料比层状固体润滑剂及硬质微粒更有效。作者认为,填料的减磨作用在于它提供的承载能力,和它抑制了摩擦面上聚四氟乙烯本体的带状结构的大面积破坏。文章讨论了填料的材质、形状和尺寸大小对复合材料磨损的影响,并对填料的承载作用做了理论分析。  相似文献   

18.
原位TiB晶须增强钛基复合材料的磨损机制   总被引:1,自引:1,他引:0  
将自蔓延和熔模精铸方法相结合,制备了原位TiB晶须增强钛基复合材料;采用X射线衍射仪和扫描电子显微镜分析了复合材料的相组成和显微组织,结合磨损表面、磨屑形貌及剖面显微组织分析结果探讨了复合材料表面的磨损机制;采用销-盘式摩擦磨损试验机评价了复合材料的耐磨性能.结果表明:TiB晶须尺寸细小、长径比大、在基体中分布均匀;与基体合金相比,钛基复合材料的耐磨性能显著提高,这是由于TiB晶须具有增强作用和承载作用所致.  相似文献   

19.
Ti(C,N)基金属陶瓷磨损机理的研究   总被引:8,自引:0,他引:8  
研究了Ti(C,N)基金属陶瓷的磨损特性,结果表明,其摩擦学性能优良,耐磨性随占结相Ni的增加而降低,在干摩擦下其磨损机理同为粘着磨损及硬质相剥落,随Ni含量的减少,金属陶瓷的粘着减轻,在油润滑条件下,金属陶瓷的磨损机理是犁削及硬质相剥落。  相似文献   

20.
采用挤压浸渍预制件工艺制备了氧化铝短纤维增强镁基复合材料,并探讨了纤维取向对润滑条件下复合材料摩擦磨损行为的影响.结果表明:挤压浸渍工艺制备的镁基复合材料具有纤维二维择向分布,不同纤维分布对复合材料在润滑条件下的耐磨性能和磨损机制有较大影响.滑动方向垂直于纤维排列方向时,复合材料的磨痕深度小于平行方向,但相对应的钢球的磨损量则高于平行方向.滑动方向垂直于纤维排列方向时复合材料的磨损机制主要包括纤维破碎和基体的磨粒磨损;滑动方向平行于纤维排列方向时复合材料的磨损机制主要表现为纤维剥落和磨粒磨损.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号