首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Highly concentrated micelles in CTAB/NaSal solutions with a fixed salt/surfactant ratio of 0.6 have been studied using Small Angle Neutron Scattering (SANS) as a function of temperature and concentration. A worm-like chain model analysis of the SANS data using a combination of a cylindrical form factors for the polydisperse micellar length, circular cross-sectional radius with Gaussian polydispersity, and the structure factor based on a random phase approximation (RPA) suggests that these micelle solutions have a worm-like micellar structure that is independent of the concentration and temperature. The size of the micelle decreases monotonically with increasing temperature and increases with concentration. These observations indicate that large micelles are formed at low temperature and begin to break up to form smaller micelles with increasing temperature.  相似文献   

2.
An important step in understanding molecular assembled systems is to examine the structure and physical properties at various length scales and clarify the correlation between them. However, while the structures of these systems have been extensively studied from nanoscopic to macroscopic scales, their viscoelastic properties have been often limited to bulk rheological measurements. By using optical tweezers and particle tracking, we here show the local viscoelastic properties and their spatial distributions for the following systems: worm-like micelle solution, supramolecular hydrogel and lyotropic liquid crystal, which are formed by self-assembly of amphiphilic molecules in water. We found that all systems studied possessed a spatial heterogeneity in their viscoelastic properties and this was originated from the heterogeneous structures. It is interesting to note that there is the heterogeneity with the characteristic length scale of sub-micrometer or micrometer scale, thereby structures, although the systems are formed by molecules with nanometer size. The findings of these studies should lead to a better understanding of the dynamics of such systems.  相似文献   

3.
We review the recent literature on particle-based simulation of surfactants, focusing on key methodological developments in the areas of surfactant self-assembly, micelle formation, micelle kinetics, the properties of worm-like micelles, interfacial adsorption and surface tension. We pay particular attention to dissipative particle dynamics where a considerable amount of work has been performed recently to improve parametrisation and apply the method quantitatively to surfactant systems. We discuss highlights and outstanding challenges and make suggestions for priority areas for future research directions.  相似文献   

4.
利用耗散粒子动力学模拟方法研究了顶盖驱动方腔流条件下, 线性两嵌段共聚物胶束形态的变化. 结果表明弱的流场对胶束的形态影响不大, 但是在中等强度流场的作用下, 小胶束会融合并形成条状胶束, 而在很强的流场作用下, 胶束会被破坏而形成体积更小的球状胶束.  相似文献   

5.
This article reviews known approaches to generating viscoelastic and gel-like surfactant systems focusing on how the formation of these viscous phases are often sensitive to a variety of chemical and physio-chemical factors. An understanding of this sensitivity is essential for generating high viscosity surfactant phases in more challenging solvent environments. The initial focus is on the generation of worm-like and reverse worm-like micelles. In addition, other approaches for using surfactant self-assembly for viscosity enhancement have been examined, namely gelatin microemulsion based organogels and the addition of substituted phenols to AOT reverse micelles.  相似文献   

6.
Ring-opening metathesis polymerization was used to generate an ABC triblock copolymer, containing complementary diamidopyridine (DAP) and thymine (THY) outer blocks, which assembles into spherical aggregates held together by DAP-THY noncovalent interactions. Addition of THY-containing small guest molecules results in complete opening and deaggregation of the block copolymer micelle. This molecular recognition and macroscopic response shows high selectivity to the guest structure, and tolerates only a small amount of conformational mobility in the THY guest. On the other hand, addition of a small DAP-containing guest does not break the aggregates, but instead, results in new micelles which show a different selectivity profile from the parent morphology. We have examined the effect of a number of structural features in the block copolymers, on both the extent and selectivity of their macroscopic response to guests (that is, opening of the micelle). This study has resulted in a set of structural guidelines, which help in the design of effective molecule-responsive micelles for applications in selective drug delivery, sensing, and surface patterning.  相似文献   

7.
The self-assembling behavior of a biomimetic glycopolymer–polypeptide triblock copolymer in aqueous solution was described and characterized by employing the hydrophobic dye solubilization method and transmission electron microscopy. The large spherical micelles can be easily generated from the dissolution of triblock copolymer in water. The morphology changes from sphere to lamellae, then to worm-like micelle, can be conveniently transformed by initial copolymer concentration. The multivalent interaction of lectins with lactose-installed polymeric aggregates was preliminarily investigated by UV-Vis spectra. Notably, this kind of aggregates may be useful as artificial polyvalent ligands in the investigation of carbohydrate–protein recognition and for the design of site-specific drug delivery systems.  相似文献   

8.
Mixed micelle of protonated or deuterated sodium dodecyl sulfate (SDS and SDSd25, respectively) and poly(propylene oxide) methacrylate (PPOMA) are studied by small-angle neutron scattering (SANS). In all the cases the scattering curves exhibit a peak whose position changes with the composition of the system. The main parameters which characterize mixed micelles, i.e., aggregation numbers of SDS and PPOMA, geometrical dimensions of the micelles and degree of ionisation are evaluated from the analysis of the SANS curves. The position q(max) of the correlation peak can be related to the average aggregation numbers of SDS-PPOMA and SDSd25-PPOMA mixed micelles. It is found that the aggregation number of SDS decreases upon increasing the weight ratio PPOMA/SDS (or SDSd25). The isotopic combination, which uses the "contrast effect" between the two micellar systems, has allowed us to determine the mixed micelle composition. Finally, the SANS curves were adjusted using the RMSA for the structure factor S(q) of charged spherical particles and the form factor P(q) of spherical core-shell particle. This analysis confirms the particular core-shell structure of the SDS-PPOMA mixed micelle, i.e., a SDS "core" micelle surrounded by the shell formed by PPOMA macromonomers. The structural parameters of mixed micelles obtained from the analysis of the SANS data are in good agreement with those determined previously by conductimetry and fluorescence studies.  相似文献   

9.
Star-shaped block copolymers consisting of non-toxic poly(ethylene glycol) and biodegradable polycaprolactone ((PEG5K-PCL)4) were synthesized by ring-opening polymerization of the ε-caprolactone monomer with hydroxyl-terminated 4-armed PEG as initiator. These biodegradable, amphiphilic star block copolymers showed micellization and sol-gel transition behaviors in aqueous solution with varying concentration and temperature. In the dilute aqueous solutions of star block copolymers, micellization behavior occurred over specific concentration. The 1,6-diphenyl-1,3,5-hexatriene (DPH) solubilization method was used to determine the critical micellization concentration (CMC) of star block copolymers. The obtained micelle size increased with increasing hydrophobic PCL block length. In high-concentration solutions, the star block copolymers showed temperature-sensitive sol-gel transition behavior. The morphology of the micelle and gel was investigated by atomic force microscopy (AFM). As a result, the micelles showed a core-corona spherical structure at concentration near CMC, while the gel showed a mountain-chain-like morphology picture. It was proposed that with increasing the micelle concentration the worm-like micelle clusters formed firstly and the gel was constructed by the packing of micelle clusters.  相似文献   

10.
This paper presents an overview of recent theoretical work on the molecular theory of micelle formation. A primary emphasis is given to the role of computer simulation of condensed materials in understanding micelle structure and thermodynamics. Much of the detailed discussion focuses on recent Monte Carlo studies of a simple molecular model of micellar aggregates. For clarity of presentation, a compact, physical organization of micelle thermodynamic equilibrium ratios is advocated. This procedure provides a simple basis for physical reasoning about the molecular roles of attractive and repulsive forces in micellization thermodynamics. The molecularly coarse-grained micellar structural information available from current small angle neutron scattering (SANS) measurements is surveyed. The structural predictions of the reviewed Monte Carlo calculations are shown to be in good qualitative agreement with the SANS data. The Monte Carlo results indicate that micelles should be viewed as fluid aggregates with a low surface free energy relative to water-hydrocarbon interfaces. The computer experimental results suggest that dynamic surface and shape fluctuations should be considered in understanding micelle structure at a molecular level. Several instantaneous structures are graphically displayed to illustrate that these transitory structures could be qualitatively described as “dry” but irregularly shaped. Configurations drawn from Monte Carlo calculations on cylindrical and bilayer structures of infinite extent are used to illustrate the role of surface flexibility in these systems.  相似文献   

11.
We present a systematic investigation and analysis of the structure and stability of reverse micelle systems with the addition of NH(4)OH, ZrOCl(2), and Al(NO(3))(3) salts. We demonstrate that the reverse micelle size decreases with increasing salt additions until one reaches a critical concentration, which characterizes the onset of system destabilization. The concept of an electrical double layer, as it applies to reverse micelles, is considered for explaining features of destabilization, including the initial decrease in reverse micelle size, the destabilization concentration, and the effect of cation valence. We propose that the reduction in size prior to instability is caused by compression of the reverse micelle electrical double layers, as higher concentrations of salts are present. The reduced thickness of the electrical double layers allows the decaying potentials to move into closer proximity to each other before generating enough repulsion to balance the forces for reverse micelle formation and form a new equilibrium average reverse micelle size. The point of reverse micelle instability has been related to the formation of a two-phase system as a result of the inability to further compress the salt co-ions in the core of the reverse micelles, which would cause an excessive repulsive force between the overlapping potentials. We have extracted a critical potential of -89 nV between the two overlapping potentials for the AOT/water/isooctane (ω(0) = 10) systems studied. All these effects have important implications for the preparation of nanopowders by reverse micelle synthesis. If the reverse micelles are unstable before the precipitates are formed, then the advantage of reverse micelle synthesis is immediately lost.  相似文献   

12.
A unique pH-dependent phase behavior from a copolymer micellar solution to a collapsed hydrogel with micelles ordered in a hexagonal phase was observed. Small-angle neutron scattering (SANS) was used to follow the pH-dependent structural evolution of micelles formed in a solution of a pentablock copolymer consisting of poly((diethylaminoethyl methacrylate)-b-(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)-b-(diethylaminoethyl methacrylate)) (PDEAEM25-b-PEO100-b-PPO65-b-PEO100-b-PDEAEM25). Between pH 3.0 and pH 7.4, we observed the presence of charged spherical micelles. Increasing the pH of the micelle solution above pH 7.4 resulted in increasing the size of the micelles due to the increasing hydrophobicity of the PDEAEM blocks above their pKa of 7.6. The increase in size of the spherical micelles resulted in a transition to a cylindrical micelle morphology in the pH range 8.1-10.5, and at pH >11, the copolymer solution undergoes macroscopic phase separation. Indeed, the phase separated copolymer sediments and coalesces into a hydrogel structure that consists of 25-35 wt % water. Small-angle X-ray scattering (SAXS) clearly indicated that the hydrogel has a hexagonal ordered phase. Interestingly, the process is reversible, as lowering of the pH below 7.0 leads to rapid dissolution of the solid into homogeneous solution. We believe that the hexagonal structure in the hydrogel is a result of the organization of the cylindrical micelles due to the increased hydrophobic interactions between the micelles at 70 degrees C and pH 11. Thus we have developed a pH-/temperature-dependent, reversible hierarchically self-assembling block copolymer system with structures spanning nano- to microscale dimensions.  相似文献   

13.
Alternating-structured polymers(ASPs), like alternating copolymers, regular multiblock copolymers and polycondensates, are very important polymer structures with broad applications in photoelectric materials. However, their self-assembly behaviors,especially the self-assembly of alternating copolymers, have not been clearly studied up to now. Meanwhile, the unique characteristics therein have not been systematically disclosed yet by both experiments and theories. Herein, we have performed a systematic simulation study on the self-assembly of ASPs with two coil alternating segments in solution through dissipative particle dynamics(DPD) simulations. Several morphological phase diagrams were constructed as functions of different impact parameters. Diverse self-assemblies were observed, including spherical micelles, micelle networks, worm-like micelles, disklike micelles, multimicelle aggregates, bicontinuous micelles, vesicles, nanotubes and channelized micelles. Furthermore, a morphological evolutionary roadmap for all these self-assemblies was constructed, along with which the detailed molecular packing models and self-assembly mechanisms for each aggregate were disclosed. The ASPs were found to adopt a folded-chain mechanism in the self-assemblies. Finally, the unique characteristics for the self-assembly of alternating copolymers were revealed especially, including(1) ultra-fine and uniform feature sizes of the aggregates;(2) independence of self-assembled structures from molecular weight and molecular weight distribution;(3) ultra-small unimolecular aggregates. We believe the current work is beneficial for understanding the self-assembly of alternating structured polymers in solution and can serve as a guide for the further experiments.  相似文献   

14.
Cryo-TEM studies of worm-like micellar solutions   总被引:2,自引:2,他引:0  
Solutions of worm-like micelles display a rich rheological behavior that makes them useful as, for example, drag-reducing agents or viscosity enhancers. The properties of these solutions depend on the morphology and interactions between the micelles, both of which can be tuned by changing solution conditions. Although there has been extensive theoretical study of these solutions, there are often conflicting explanations, or no explanation, of an observed trend. Application of cryogenic transmission electron microscopy (cryo-TEM) for the direct visualization of the micelles can help correlate microstructure to rheology. Of particular interest is the cause of a maximum in viscosity as a function of increasing surfactant or salt concentration. Several studies support the theory of a transition from linear to branched micelles, while other studies report no change in microstructure or no connection between structure evolution and changes in viscosity. More systematic and thorough studies that combine cryo-TEM with other experimental techniques are needed.  相似文献   

15.
Dilute and concentrated surfactant systems at the solid-liquid interface are examined using classical molecular dynamics simulations. Particular emphasis is placed on understanding how surfactants aggregate and form the micellar structure, how micelles change shape at high concentrations in aqueous media and in the presence of hydrophilic surfaces, and at what force this micellar structure breaks apart during indentation of micelle-covered surfaces with a proximal probe microscope tip. The specific system of interest is C12TAB (n-dodecyltrimethylammonium bromide) surfactant in an aqueous medium that is modeled with empirical potentials. The simulations predict that the micelle structure in water is compact and either spherical or elliptical in shape. In the presence of a hydrophilic surface of silica, the structure evolves into a flat elliptical shape, in agreement with experimental findings. The simulated indentation of the micelle/silica system causes the micelle to break apart at an indentation force of about 1 nN and form a surfactant monolayer. The predicted force curve is in excellent agreement with experimental measurements.  相似文献   

16.
通过引进新的溶液制备方法,以光散射、流变、电镜等方法研究了烷烃链长度不对称的阴/阳离子表面活性剂等摩尔混合体系,其中阳离子为二十二烷基三甲基溴化铵(C22TABr),阴离子是烷基羧酸钠(Cn-1COONa, n = 4, 6, 8, 10, 12, 14, 16).结果表明,烷烃链长度高度不对称时(C22/n4)生成了球状胶束,随着降低不对称度,聚集体向棒状、蠕虫状直至囊泡转变.在构成囊泡的体系中,随着降低链长不对称度,聚集体尺寸明显增大.机理分析表明,阴/阳离子对的几何形状决定了聚集体的形貌以及它们的转变.  相似文献   

17.
Polymer-like micelles are analogs to polymer solutions and provide an exciting class of materials for both applications and fundamental understanding of polyelectrolyte systems. Small angle neutron and X-ray scattering have been key to the characterization of these materials from the first observations of linear micelle growth. As new materials are developed, these techniques continue to be utilized and combined with other analytical tools to characterize the length and time scales of polymer-like micelle behavior. Recent reports on the use of small-angle scattering to characterize polymer-like and wormlike micelles are reviewed, with focus on new materials, improvements in analytical approaches and anisotropic structures.  相似文献   

18.
赵剑曦  谢丹华 《化学进展》2012,24(4):456-462
本文从分析蠕虫胶束形成的分子几何条件和自由能驱动因素入手,总结了传统阴离子表面活性剂蠕虫胶束的形成和性质,指出制约其构筑和产生优良黏弹性的原因。在此基础上,介绍了Gemini表面活性剂构筑蠕虫胶束的分子结构优势,以及由此构筑阴离子蠕虫胶束的研究进展,尤其是长刚性联接链Gemini表面活性剂形成的蠕虫胶束。最后特别指出,基于新颖分子结构优势,Gemini表面活性剂可望成为蠕虫胶束构筑的主要分子对象。  相似文献   

19.
李颖  张云  林良良  许虎君 《应用化学》2022,39(8):1262-1273
将N‑月桂酰基甲基丙氨酸钠(SLMA)依次与月桂酰胺丙基甜菜碱(LAB)、烷基糖苷(APG1214)分别进行二元及三元复配,通过吊片法、稳态荧光探针法、动态光散射及稳态荧光猝灭法,对SLMA/LAB二元复配体系及SLMA/LAB/APG三元复配体系间的协同增效作用,以及溶液组成对其微极性、平均流体力学半径及胶束聚集数的影响进行了研究,并应用正规溶液理论计算二元及三元复配体系的相互作用参数。结果表明,SLMA/LAB二元复配体系及SLMA/LAB/APG三元复配体系均表现出全面增效的协同作用,其最佳物质的量比分别为n(SLMA)∶n(LAB)=3∶7,n(SLMA/LAB)∶n(APG1214)=3∶7,对应临界胶束浓度(CMC)分别为1.054×10^(−3)和1.595×10^(−4) mol/L,SLMA/LAB二元复配体系趋于形成分布集中的单一形态聚集体,且总体偏小;SLMA/LAB/APG三元复配体系的胶束大小比单一体系分布宽,且其胶束体积明显大于二元复配体系。两种复配体系所形成的胶束聚集数均小于单一体系,形成了更加紧密、稳定、较小的胶束结构。SLMA/LAB二元复配体系及SLMA/LAB/APG三元复配体系中表面活性剂分子间的相互作用力加快了稳定胶束的形成,胶束大小分布较宽,以球状及非球状胶束的形式存在,且复配体系形成了更加紧密的胶束结构。  相似文献   

20.
Confined colloidal systems have been the subject of extensive theoretical and experimental research, and the recent observation of long-range like-charge attraction in such systems has only highlighted their peculiar behavior. On the other hand, surfactant solutions are often used in small confined space, yet their behavior in confinement has received relatively little attention. A distinct feature of confined self-assembling systems is that the aggregates are capable of adjusting their composition, size, and shape in response to their external environment, which may lead to very different phase characteristics compared to bulk solutions. The primary objective of this study is to explore the effects of varying micelle composition on the structural behavior of a confined mixed ionic micellar solution. Mesoscale canonical Monte Carlo simulations were used to probe the structure of the confined solution, while a molecular-thermodynamic model was used to systematically account for the change in micelle size as we varied its composition. Significant micelle ordering was found under certain conditions, which implies that large deviations from the minimum-energy micelle configuration may not be entropically favorable. Accumulation of micelles along the midplane was observed when the confining walls are weakly charged, suggesting that micelle shape transformation should be considered in more detail. On the other hand, with high wall charge density, apparent attraction was found between like-charged micelles and wall. These findings point to the need for a more quantitative theoretical treatment in describing surfactant self-assembly in confined geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号