共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
本文合成了一类以9,10-二甲氧基蒽为给体,双酚A为连接链连接不同受体的电子给体受体新体系,通过稳态荧光光谱及时间分辨荧光光谱研究了它们的光致电子转移反应,并通过测定氧化还原电位,计算出各电子给个受体体系电子转移反应的自由能变化。结果表明,在这一类体系中,光致电子转移速率常数与自由能变化关系符合Rehm-Weller关系式。 相似文献
3.
合成了一些电子给体,电子受体和含呫吨染料的二元化合物.在激发染料时,测定和计算了染料与给体和受体之间的光致分子间和分子内的电子转移的速率常数和效率.发现激发的呫吨染料可与多种,其中包括很弱的给体和受体之间进行有效的光致电子转移反应.分子间的反应速率常数受扩散控制,有浓度的影响.闪光光解的实验表明,在浓度较低时,主要是通过染料的三重激发态来进行的.如存在异种电荷,则产生静态猝灭.分子内的光致电子转移反应与溶液的浓度无关,可从染料的单重激发态直接有效地进行. 相似文献
4.
5.
本文分别用亚甲基和甾体雌二醇刚性链将吲哚与9,10-二甲氧基蒽连接起来,合成了两个分子内能量转移体系,研究了分子內吲哚的激发能向9,10-二甲氧基蒽的传递过程与距离及溶剂环境的关系;发现在两个体系中激发吲哚都可以发生从吲哚到9,10-二甲氧基蒽的单重态-单重态能量转移,在远距离的条件下,能量转移按偶极子-偶极子共振机制进行,由实验结果,根据Forster公式计算得到的给体与受体之间的距离与用分子模型测量得到的距离是一样的,并研究了溶剂极性对能量转移过程的影响。 相似文献
6.
合成了以-(CH_2)_4连接的荧光素、紫精、咔唑二元及三元化合物,运用吸收光谱,荧光光谱及荧光寿命研究了荧光素-咔唑、紫精-荧光素、紫精-荧光素-咔唑等二元、三元化合物分子内的光致相互作用,结果表明:分子内紫精对荧光素荧光的淬灭主要通过形成不发荧光的络合物,荧光淬灭的效率φ_Q为0.97,荧光寿命淬灭的效率φ_(ET)为0,不发荧光络合物的淬灭的效率φ_C为0.97.咔唑对荧光素荧光的淬灭则以动态的光致电子转移过程为主,荧光淬灭的效率φ_Q为0.63,荧光寿命淬灭的效率φ_(ET)也为0.63,不发荧光络合物的淬灭效率φ_C为0.在三元化合物内紫精-荧光素和荧光素-咔唑对光致相互作用是一种竞争过程,以荧光素-咔唑对间的动态电子转移反应为主,φ_Q为0.97,φ_(ET)为0.65,不发荧光络合物的淬灭效率φ_C为0.32.从反应自由能变化的角度对此进行了讨论. 相似文献
7.
8.
RNA与蛋白质相互作用是生物体进行生命活动的基础,光活化核苷酸引发的共价交联是研究其相互作用的有效手段.对其机理的研究有助于理解并调控交联的位点及氨基酸,因此探测关键的中间体来揭示机理很有必要.本工作选择光活化核苷酸4-硫代尿嘧啶(4-TU)和色氨酸(TrpH)为模型体系,通过激光闪光光解技术探测瞬态中间体并由此揭示机理.实验发现4-TU三重态与TrpH发生电子转移反应,瞬态吸收光谱上观察到4-TU·-及TrpH·+,以及TrpH·+脱质子生成的Trp·.通过测量4-TU三重态衰减动力学得到电子转移反应的速率常数为2.88×109 L·mol-1·s-1,并研究了pH值对反应的影响.电子转移驱动力ΔG为-0.15 eV,是能量有利的过程.结果表明电子转移反应是光致共价交联过程中关键的第一步反应,引发了后续的质子转移及自由基交联过程. 相似文献
9.
论文中设计,合成了以9,10-二甲氧基蒽(DMA)为电子给体,双酚A(BA)为连接体,连接不同的电子受体(对苯甲酸乙酯,对腈基苯,2,4-二氧苯,对硝基苯,蒽醌AQ,2,4-二硝基苯)的六种二元分子,测定了它们的氧化还原电位,吸收光谱,荧光光谱,荧光寿命等。研究了它们的分子内光致电子转移过程,研究了它们的分子内光致电子转移反应自由能的变化△G与电子转移速率常数K_q的关系。 相似文献
10.
本文合成了锌酞菁、紫精与二茂铁经共价键相连接的两亲性新的三元化合物,测定了它的吸收光谱、荧光光谱、荧光寿命和瞬态吸收及其衰减,并与二元化合物锌酞菁-紫精进行了比较,结果表明:在DMF和表面活性剂溶液中三元化合物都发生了有效的分子内光致电子转移反应,给出了稳定的电荷转移离子对,其寿命长达100μs以上,表明存在着一个两步电子转移过程,用LB膜技术成功地组装了三元化合物的分子,并检测到明显的光电效应。 相似文献
11.
1,3-Dipolar cycloaddition of DTE-azomethine ylides (DTE: dithienyl-ethene) to C60 in refluxed toluene was used to synthesize novel dumbbell-type fullerene dimer 1. For the sake of comparison, the monoadduct 2 were also synthesized. The molecular geometries of these two compounds were determined by theoretical calculations with HF-3/21G method. UV-Vis and fluorescence experiments were carried out in solvents with different polarity at the room temperature. All the results indicated the existence of a photoinduced intramolecular electron transfer process between the donor and acceptor moieties. 相似文献
12.
利用紫外-可见吸收光谱、瞬态吸收光谱及X射线衍射等方法研究了苝醌染料竹红菌素镁离子配合物(Mg2+-HA)与富勒烯C60的相互作用. 结果表明, Mg2+-HA与C60在溶液和固体状态下都能够形成稳定的超分子. Mg2+-HA存在条件下, C60能够溶于多种极性溶剂, 在二甲基亚砜(DMSO)中的溶解度能够达到1×10-4 mol·L-1. 作为超分子体系中的光捕获分子, Mg2+-HA能显著地提高C60与N,N-二甲基苯胺(DMA)的光诱导电子转移反应效率, 生成的C60负离子自由基的电子自旋共振光谱(ESR)信号强度比未加入Mg2+-HA时增强了9倍左右. 相似文献
13.
14.
15.
1 INTRODUCTION As early as forty years ago, Lippert et al. found that there is a double-fluorescence phenomenon of the compound 4-(N,N-dimethylamino)benzonitrile (4DMAB-CN)[1]. Subsequently, similar phenomenon was observed in the same kind of compounds[2~5]. Two bands exist in these fluorescence spectra, repre- senting respectively that the minor and macro axis polarizations are hardly and easily affected by the polar solvent. This phenomenon can be explained by the intramolecular e… 相似文献
16.
17.
18.
Ying Lin Mohamed E. El‐Khouly Dr. Yu Chen Prof. Dr. Mustafa Supur Lingling Gu Yongxi Li Shunichi Fukuzumi Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(41):10818-10824
A new π‐conjugated copolymer, namely, poly{cyanofluore‐alt‐[5‐(N,N′‐diphenylamino)phenylenevinylene]} ((CNF–TPA)n), was synthesized by condensation polymerization of 2,2′‐(9,9‐dioctyl‐9H‐fluorene‐2,7‐diyl)diacetonitrile and 5‐(N,N′‐diphenylamino)benzene‐1,3‐dicarbaldehyde by using the Knoevenagel reaction. By design, diphenylamine, alkylfluorene and poly(p‐phenylenevinylene) linkages were combined to form a (CNF–TPA)n copolymer which exhibits high thermal stability and glass‐transition temperature. Photodynamic measurements in polar benzonitrile indicate fast and efficient photoinduced electron transfer (≈1011 s?1) from triphenylamine (TPA) to cyanofluorene (CNF) to produce the long‐lived charge‐separated state (90 μs). The finding that the charge‐recombination process of (CNF.?–TPA.+)n is much slower than the charge separation in polar benzonitrile suggests a potential application in molecular‐level electronic and optoelectronic devices. 相似文献