首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper presents two new heuristics for the flowshop scheduling problem with sequence-dependent setup times (SDSTs) and makespan minimization objective. The first is an extension of a procedure that has been very successful for the general flowshop scheduling problem. The other is a greedy randomized adaptive search procedure (GRASP) which is a technique that has achieved good results on a variety of combinatorial optimization problems. Both heuristics are compared to a previously proposed algorithm based on the traveling salesman problem (TSP). In addition, local search procedures are developed and adapted to each of the heuristics. A two-phase lower bounding scheme is presented as well. The first phase finds a lower bound based on the assignment relaxation for the asymmetric TSP. In phase two, attempts are made to improve the bound by inserting idle time. All procedures are compared for two different classes of randomly generated instances. In the first case where setup times are an order of magnitude smaller than the processing times, the new approaches prove superior to the TSP-based heuristic; for the case where both processing and setup times are identically distributed, the TSP-based heuristic outperforms the proposed procedures.  相似文献   

2.
This paper presents a new branching scheme for the asymmetric traveling salesman problem (ATSP) based on clusters. A cluster is defined as a node set with the characteristic that there exists an optimal solution in which the nodes in the node set are visited consecutively. The paper considers identification of clusters, implementation of a cluster based branching scheme, and cluster based dominance tests. The new approach is implemented in a branch and bound algorithm using a well-known additive bounding procedure. Considerable savings in computing time are obtained compared to previously published assignment based branch and bound algorithms for the ATSP.  相似文献   

3.
In this study we formulate the dual of the traveling salesman problem, which extends in a natural way the dual problem of Held and Karp to the nonsymmetric case. The dual problem is solved by a subgradient optimization technique. A branch and bound scheme with stepped fathoming is then used to find optimal and suboptimal tours. Computational experience for the algorithm is presented.This author's work was partially supported by NSF Grant #GK-38337.  相似文献   

4.
This paper presents a new model for a special type of traveling salesman problem called the High Multiplicity Asymmetric Traveling Salesman Problem (HMATSP). The formulation adopts a flow-based subtour elimination structure and establishes its validity for this problem. Also, we present computational results to demonstrate the efficacy of our modeling approach. The model is then incorporated as a substructure in a formulation for the lot-sizing problem involving parallel machines and sequence-dependent setup costs, also known as the Chesapeake Problem, and related test problems are solved to optimality for the first time in the literature.  相似文献   

5.
A simple transformation of the distance matrix for the Euclidean traveling salesman problem is presented that produces a tighter lower bound on the length of the optimal tour than has previously been attainable using the assignment relaxation. The improved lower bound is obtained by exploiting geometric properties of the problem to produce fewer and larger subtours on the first solution of the assignment problem. This research should improve the performance of assignment based exact procedures and may lead to improved heuristics for the traveling salesman problem.  相似文献   

6.
In 1970 Held and Karp introduced the Lagrangean approach to the symmetric traveling salesman problem. We use this 1-tree relaxation in a new branch and bound algorithm. It differs from other algorithms not only in the branching scheme, but also in the ascent method to calculate the 1-tree bounds. urthermore we determine heuristic solutions throughout the computations to provide upperbounds. We present computational results for both a depth-first and a breadth-first version of our algorithm. On the average our results on a number of Euclidean problems from the literature are obtained in about 60% less 1-trees than the best known algorithm based on the 1-tree relaxation. For random table problems (up to 100 cities) the average results are also satisfactory.  相似文献   

7.
The traveling salesman problem is a classic NP-hard problem used to model many production and scheduling problems. The problem becomes even more difficult when additional salesmen are added to create a multiple traveling salesman problem (MTSP). We consider a variation of this problem where one salesman visits a given set of cities in a series of short trips. This variation is faced by numerous franchise companies that use quality control inspectors to ensure properties are maintaining acceptable facility and service levels. We model an actual franchised hotel chain using traveling quality inspectors to demonstrate the technique. The model is solved using a commercially available genetic algorithm (GA) tool as well as a custom GA program. The custom GA is proven to be an effective method of solving the proposed model.  相似文献   

8.
In this paper, general properties of traveling salesman problem has been illustrated, then a model has been introduced to minimize Make-span (time interval which all of jobs will be done) with considering sequence-dependence setup times and processing time. Furthermore, fuzzy sets and its characteristics are applied to a Hard-solvable traveling salesman problem with considering processing times. As it can be seen, traveling salesman problems are NP-hard, so solving problem in huge dimensions is uncontrollably manageable and in other side these kinds of problems in real-world are unavoidable, so a local search can prove their importance. (However this Meta-heuristic methods may not reveal exact optimal solution, but they yield a near-exact optimal solution in undeniable reduced computational time). Here, some of most famous local searches have been explained in their common and normal form, which are Genetic Algorithm (GA), Tabu Search (TS), Simulated Annealing (SA), Ant Colony System (ACO). In rest, a comprehensive comparison through these methods has been shown. This normality in methods structure could help the article to hold no-side-taken and acceptable judgments. In final, point methods analysis and parameter tuning are held.  相似文献   

9.
This paper presents an enhanced heuristic for minimizing the makespan of the flow shop scheduling problem with sequence-dependent setup times. The procedure transforms an instance of the problem into an instance of the traveling salesman problem by introducing a cost function that penalizes for both large setup times and bad fitness of schedule. This hybrid cost function is an improvement over earlier approaches that penalized for setup times only, ignoring the flow shop aspect of the problem. To establish good parameter values, each component of the heuristic was evaluated computationally over a wide range of problem instances. In the testing stage, an experimental comparison with a greedy randomized adaptive search procedure revealed the conditions and data attributes where the proposed procedure works best.  相似文献   

10.
We consider the relationship between the minimum and the maximum traveling salesman problem. The paper is based on the idea of applying heuristics for the maximum traveling salesman problem to the minimum traveling salesman problem. Numerical results confirm the efficiency of the proposed method.  相似文献   

11.
We consider a single-machine scheduling problem which arises as a subproblem in a job-shop environment where the jobs have to be transported between the machines by a single transport robot. The robot scheduling problem may be regarded as a generalization of the traveling salesman problem with time windows, where additionally generalized precedence constraints (minimal time-lags) have to be respected. The objective is to determine a sequence of all nodes and corresponding starting times in the given time windows in such a way that all generalized precedence relations are respected and the sum of all traveling and waiting times is minimized.We calculate lower bounds for this problem using constraint propagation techniques and a linear programming formulation which is solved by a column generation procedure. Computational results are presented for test data arising from job-shop instances with a single transport robot and some modified traveling salesman instances.  相似文献   

12.
When the matrix of distances between cities is symmetric and circulant, the traveling salesman problem (TSP) reduces to the so-called symmetric circulant traveling salesman problem (SCTSP), that has applications in the design of reconfigurable networks, and in minimizing wallpaper waste. The complexity of the SCTSP is open, but conjectured to be NP-hard, and we compare different lower bounds on the optimal value that may be computed in polynomial time. We derive a new linear programming (LP) relaxation of the SCTSP from the semidefinite programming (SDP) relaxation in [E. de Klerk, D.V. Pasechnik, R. Sotirov, On semidefinite programming relaxation of the traveling salesman problem, SIAM Journal of Optimization 19 (4) (2008) 1559-1573]. Further, we discuss theoretical and empirical comparisons between this new bound and three well-known bounds from the literature, namely the Held-Karp bound [M. Held, R.M. Karp, The traveling salesman problem and minimum spanning trees, Operations Research 18 (1970) 1138-1162], the 1-tree bound, and the closed-form bound for SCTSP proposed in [J.A.A. van der Veen, Solvable cases of TSP with various objective functions, Ph.D. Thesis, Groningen University, The Netherlands, 1992].  相似文献   

13.
We study the version of the prize collecting traveling salesman problem, where the objective is to find a tour that visits a subset of vertices such that the length of the tour plus the sum of penalties associated with vertices not in the tour is as small as possible. We present an approximation algorithm with constant bound. The algorithm is based on Christofides' algorithm for the traveling salesman problem as well as a method to round fractional solutions of a linear programming relaxation to integers, feasible for the original problem.Research supported in part by ONR contract N00014-90-J-1649 and NSF contract DDM-8922712.  相似文献   

14.
The paper extends the branch and bound algorithm of Little, Murty, Sweeney, and Karel to the traveling salesman problem with pickup and delivery customers, where each pickup customer is required to be visited before its associated delivery customer. The problems considered include single and multiple vehicle cases as well as infinite and finite capacity cases. Computational results are reported.  相似文献   

15.
This note considers a variant of the traveling salesman problem in which we seek a route that minimizes the total of the vertex arrival times. This problem is called the deliverly man problem. The traveling salesman problem is NP-complete on a general network and trivial on a tree network. The delivery man problem is also NP-complete on a general network but far from trivial on a tree network. Various characteristics of the delivery man problem for tree networks are explored and a pseudo-polynomial time solution algorithm is proposed.This research was sponsored by NSF Grant #ECS-8104647.  相似文献   

16.
The best known special case of the traveling salesman problem that is well solved is that due to Gilmore and Gomory. It is a problem of scheduling a heat treatment furnace. In this paper we give a polynomial algorithm for detecting whether or not a given traveling salesman problem is an instance of their problem; we also compute the parameters necessary to apply their algorithm. Thus all such problems can not only be solved in polynomial time but also recognized in polynomial time.  相似文献   

17.
A parallel branch and bound algorithm that solves the asymmetric traveling salesman problem to optimality is described. The algorithm uses an assignment problem based lower bounding technique, subtour elimination branching rules, and a subtour patching algorithm as an upper bounding procedure. The algorithm is organized around a data flow framework for parallel branch and bound. The algorithm begins by converting the cost matrix to a sparser version in such a fashion as to retain the optimality of the final solution. Computational results are presented for three different classes of problem instances: (1) matrix elements drawn from a uniform distribution of integers for instances of size 250 to 10 000 cities, (2) instances of size 250 to 1000 cities that concentrate small elements in the upper left portion of the cost matrix, and (3) instances of size 300 to 3000 cities that are designed to confound neighborhood search heuristics.  相似文献   

18.
In this paper, new lower bounds for the asymmetric travelling salesman problem are presented, based on spanning arborescences. The new bounds are combined in an additive procedure whose theoretical performance is compared with that of the Balas and Christofides procedure (1981). Both procedures have been imbedded in a simple branch and bound algorithm and experimentally evaluated on hard test problems.  相似文献   

19.
We describe an algorithm for the asymmetric traveling salesman problem (TSP) using a new, restricted Lagrangean relaxation based on the assignment problem (AP). The Lagrange multipliers are constrained so as to guarantee the continued optimality of the initial AP solution, thus eliminating the need for repeatedly solving AP in the process of computing multipliers. We give several polynomially bounded procedures for generating valid inequalities and taking them into the Lagrangean function with a positive multiplier without violating the constraints, so as to strengthen the current lower bound. Upper bounds are generated by a fast tour-building heuristic. When the bound-strengthening techniques are exhausted without matching the upper with the lower bound, we branch by using two different rules, according to the situation: the usual subtour breaking disjunction, and a new disjunction based on conditional bounds. We discuss computational experience on 120 randomly generated asymmetric TSP's with up to 325 cities, the maximum time used for any single problem being 82 seconds. This is a considerable improvement upon earlier methods. Though the algorithm discussed here is for the asymmetric TSP, the approach can be adapted to the symmetric TSP by using the 2-matching problem instead of AP.Research supported by the National Science Foundation through grant no. MCS76-12026 A02 and the U.S. Office of Naval Research through contract no. N0014-75-C-0621 NR 047-048.  相似文献   

20.
The Probabilistic Traveling Salesman Problem is a variation of the classic traveling salesman problem and one of the most significant stochastic routing problems. In probabilistic traveling salesman problem only a subset of potential customers need to be visited on any given instance of the problem. The number of customers to be visited each time is a random variable. In this paper, a variant of the well-known Greedy Randomized Adaptive Search Procedure (GRASP), the Expanding Neighborhood Search–GRASP, is proposed for the solution of the probabilistic traveling salesman problem. expanding neighborhood search–GRASP has been proved to be a very efficient algorithm for the solution of the traveling salesman problem. The proposed algorithm is tested on a numerous benchmark problems from TSPLIB with very satisfactory results. Comparisons with the classic GRASP algorithm and with a Tabu Search algorithm are also presented. Also, a comparison is performed with the results of a number of implementations of the Ant Colony Optimization algorithm from the literature and in six out of ten cases the proposed algorithm gives a new best solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号