首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chien RL 《Electrophoresis》2003,24(3):486-497
One of the major challenges in capillary electrophoresis and other miniaturization separation techniques is to maintain high detection sensitivity in the increasingly smaller dimension. Numerous on-column sample preconcentrating procedures, based either on electrokinetic focusing or chromatographic effects, have been developed. This review will discuss some practical approaches to sample stacking from a personal perspective. Several recent developments in sample stacking on microfluidic devices are reviewed.  相似文献   

2.
魏娟  谷雪  王彦  阎超 《分析化学》2011,39(2):188-192
以毛细管等电聚焦(cIEF)为第一维分离模式,以反相加压毛细管电色谱(pCEC)为第二维分离模式,开展离线二维色谱分离研究,并对复杂肽段进行分离.羟丙基纤维紊(HPC)涂层的毛细管用于cIEF分离,对6种标准蛋白质的平均分离柱效约为31万.在毛细管末端引进电隔离槽,方便了第一维样品的收集.在加电6 kV下,第二维pCE...  相似文献   

3.
Amperometric and conductometric detection are currently the two major electrochemical detection modes in capillary and chip electrophoresis. The ease of miniaturization and integration of electrochemical detection elements offers a high potential for the development of portable analytical devices based on electromigrative separations. The challenges and basic concepts of both detection principles in the context of capillary/chip electrophoresis are shortly introduced and milestones of the methodical developments are summarized from a historical perspective. Recent advances and applications are discussed with more detail. Particular attention is paid to new trends in this area of research such as measurements in short capillaries and the enormous progress and increased popularity of contactless conductivity detection. Correspondence: Frank-Michael Matysik, Institute of Analytical Chemistry, University of Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany  相似文献   

4.
The design of a new capillary isoelectric focusing (cIEF) instrument, composed of a rugged cartridge holding a short piece of capillary and a universal, inexpensive concentration gradient detector, was optimized and applied to the analysis of various protein samples. High-efficiency cIEF separations with sub-femtomole detection limits for absolute amounts were obtained using 10 microns I.D. capillaries with large O.D.-to-I.D. ratios. An electric field strength of 1 kV/cm applied in the focusing step resulted in a 10(-8) M on-column concentration detection limit, which corresponded to 10(2) amol absolute amount of proteins. The detection volume was estimated to be 2 pl, which is among the smallest values reported to date for any optical or spectroscopic detector. When a 6-cm long capillary was used, proteins with isoelectric points ranging from 4.7 to 8.8 could be analyzed in about 5 min, the shortest analysis time ever reported for cIEF. Compared with commercial cIEF instruments with UV-visible absorbance detectors, the instrument is easier to use and has lower detection limits and better resolution. Several protein mixtures and real samples were separated with this instrument.  相似文献   

5.
The non-availability of commercial carrier ampholytes in the pH range greater than 11 has contributed to difficulties in focusing and resolving highly basic proteins/peptides using capillary isoelectric focusing (cIEF). Two different approaches, involving the use of N,N,N',N'-tetramethylethylenediamine (TEMED) and ampholyte 9-11, are investigated for their effects on the extension of separation range in cIEF. The addition of TEMED into pharmalyte 3-10 not only prevents the peptides/proteins from focusing in sections of the capillary beyond the detection point, but also extends the separation range to at least isoelectric point (pI) 12. The combination of ampholyte 9-11 with pharmalyte 3-10 surprisingly provides baseline resolution between bradykinin (pI 12) and cytochrome c (pI 10.3). The sample mixture, containing bradykinin, the high-pI protein calibration kit (pI 5.2-10.3), and cytochrome c digest, is employed to demonstrate the cIEF separation of proteins and peptides over a wide pH range of 3.7-12.  相似文献   

6.
C Tan  SJ Lo  PR Leduc  CM Cheng 《Lab on a chip》2012,12(19):3654-3665
The development of optofluidic-based technology has ushered in a new era of lab-on-a-chip functionality, including miniaturization of biomedical devices, enhanced sensitivity for molecular detection, and multiplexing of optical measurements. While having great potential, optofluidic devices have only begun to be exploited in many biotechnological applications. Here, we highlight the potential of integrating optofluidic devices with synthetic biological systems, which is a field focusing on creating novel cellular systems by engineering synthetic gene and protein networks. First, we review the development of synthetic biology at different length scales, ranging from single-molecule, single-cell, to cellular population. We emphasize light-sensitive synthetic biological systems that would be relevant for the integration with optofluidic devices. Next, we propose several areas for potential applications of optofluidics in synthetic biology. The integration of optofluidics and synthetic biology would have a broad impact on point-of-care diagnostics and biotechnology.  相似文献   

7.
超高速平板通道毛细管电泳   总被引:8,自引:0,他引:8  
陈洪  宋立国 《分析化学》1997,25(9):1098-1103
超高速平板通道毛细管电泳是90年代发展的一种秒级分离的新颖技术。应用现代微电子光刻技术将化学反应。进样、分离和检测等组合在数厘米玻片上。实现分离分析的小型化、集成化、一体化和自动化。  相似文献   

8.
Shimura K 《Electrophoresis》2002,23(22-23):3847-3857
The methodological developments in the field of capillary isoelectric focusing (CIEF) published between 1997-2001 are reviewed as a continuation of the previous review by Rodriguez-Diaz et al. (Electrophoresis 1997, 18, 2134-2144). The applications are summarized and the progress in CIEF technologies, including experimental setup with coated and uncoated capillaries, remedies for the presence of salts in samples, additives to reduce precipitation of samples during the focusing process, calibration of the pH gradients, issues of reproducibility, carrier ampholyte-free CIEF, and a computer simulation of focusing process are discussed. Developments of IEF separations in fabricated microchannels and the advances in detection schemes, i.e., imaging, fluorescence and chemiluminescence, are summarized. The progress in micropreparation was noted, and the massive works for two-dimensional separations are described for the coupling with size-exclusion chromatography and mass spectrometry, in which the developments aimed at proteomics are discussed separately. The applications for the detection of noncovalent complexes and the separations of microorganisms are reviewed.  相似文献   

9.
Capillary isoelectric focusing (cIEF) and free zone capillary electrophoresis were evaluated for separation of native hemoglobins and globin chains. High-resolution separations of adult human hemoglobin A, fetal human hemoglobin F, and hemoglobin variants S and C were obtained using cIEF with cathodic mobilization. Absorbance detection in the UV and visible regions were compared, and on-line fast UV or visible-wavelength scanning detection was used to obtain spectral information on separated components. Globin chain analysis was performed on the same hemoglobin species by free zone capillary electrophoresis following precipitation of the protein with acidic acetone. Free zone separations were carried out at low pH in the presence of 7 M urea.  相似文献   

10.
McWhorter S  Soper SA 《Electrophoresis》2000,21(7):1267-1280
As capillary electrophoresis continues to focus on miniaturization, either through reducing column dimensions or situating entire electrophoresis systems on planar chips, advances in detection become necessary to meet the challenges posed by these electrophoresis platforms. The challenges result from the fact that miniaturization requires smaller load volumes, demanding highly sensitive detection. In addition, many times multiple targets must be analyzed simultaneously (multiplexed applications), further complicating detection. Near-infrared (NIR) fluorescence offers an attractive alternative to visible fluorescence for critical applications in capillary electrophoresis due to the impressive limits of detection that can be generated, in part resulting from the low background levels that are observed in the NIR. Advances in instrumentation and fluorogenic labels appropriate for NIR monitoring have led to a growing number of examples of the use of NIR fluorescence in capillary electrophoresis. In this review, we will cover instrumental components used to construct ultrasensitive NIR fluorescence detectors, including light sources and photon transducers. In addition, we will discuss various types of labeling dyes appropriate for NIR fluorescence and finally, we will present several applications that have used NIR fluorescence in capillary electrophoresis, especially for DNA sequencing and fragment analysis.  相似文献   

11.
Chemical processing on microchips for analysis, synthesis, and bioassay   总被引:1,自引:0,他引:1  
This review describes our recent research on miniaturization of chemical systems. We have developed a miniaturization methodology based on pressure-driven multiphase laminar flow and a highly sensitive detection tool, the thermal lens microscope. Some representative applications of the methodology in the fields of analysis, synthesis, and bioassay are described.  相似文献   

12.
Bipolar electrode-based (BPE-based) electrochromic devices have garnered increasing attention in the past decade. These BPE-based electrochromic devices have been used for analytical health monitoring, point-of-care (POC) diagnostics, and chemical sensing. In this review, we highlight recent progress made regarding BPE-based electrochromic devices constructed for these analytical applications. Various, available electrochromic materials are summarized in the first section, after which the different device types (e. g., paper-based and self-powered) are discussed. Biological- and chemical-based analytical demonstrations of these devices are then reviewed. Finally, we conclude this review with a perspective on the future developments of BPE-based electrochromic devices in analytical applications.  相似文献   

13.
Electrochemical detection has a great potential in microfluidic systems due to its easy miniaturization without losing analytical performance. In addition, the use of nanomaterials in electroanalysis improves sensitivity, selectivity, and reproducibility. The topic of this review is the use of nanomaterials (nanoparticles, nanotubes, graphene) in electrochemical detection for capillary electrophoresis and microfluidic systems (microchips and paper based analytical devices). This review covers from 2015 up to now and it is a continuation of our previous review, also published in Electrophoresis journal. The following aspects of the surveyed articles are mainly addressed: type of nanomaterial, protocol of working electrode preparation (composite, drop casting and others), advantages of nanomaterial employment and application field (clinical, food, environmental and home security). The use of nanomaterials is still an interesting approach to improve the analytical performance of electrochemical detection based on microfluidic devices. Along the review, readers will find new protocols for working electrode modification, new carbon nanomaterials and promising applications in the aforementioned fields.  相似文献   

14.
刘让东  许歆瑶  王薇薇  王彦  闫超 《色谱》2019,37(10):1090-1097
通过聚合物原位聚合反应,制备了部分填充的毛细管整体柱。pH 3~10的载体两性电解质被固化在该毛细管整体柱上。在引入八通进样阀、三通阀和四通连接单元的基础上,构建了适用于固化pH梯度毛细管等电聚焦整体柱(M-IPG)的平台。在蛋白质药物测定过程中,用M-IPG柱和羟丙基纤维素(HPC)涂层毛细管柱同时对曲托珠单抗和依那西谱的等电点进行了测定。结果表明,两种等电聚焦柱都能够同时分离混合蛋白质样品并测定蛋白质类药物中单抗和融合蛋白质的等电点(pI),M-IPG柱所测的pI值与HPC涂层毛细管柱测定的结果基本一致,表明了该柱在进一步构建多维分离平台进行蛋白质组学研究方面的潜力。  相似文献   

15.
Qian  Sihua  Sun  Shan  Wang  Yuhui  Li  Zhongjun  Lin  Hengwei 《中国科学:化学(英文版)》2019,62(12):1601-1618
Recently, multidimensional(or multi-channel) sensing methodology has attracted broad attention in the field of analytical chemistry due to its fascinating merits. A variety of multidimensional sensors based on sensor arrays, lab-on-a-molecule/nanoparticle and smart chip strategies have been designed to differentiate chemical structure and property similar analytes and complex samples. Pattern recognition algorithms are usually used and allow these sensors to fulfill such proposes. In this review,the recent advances of multidimensional sensor devices were firstly summarized, and particularly focused on their design strategies and applications in monitoring of biological active molecules, biomarkers, microbes, foods and beverages, etc. Then,some limitations and possible solutions of multidimensional sensors were discussed. And finally, potential applications of this technique in the future were proposed. This review would help the readers who are interested in multidimensional sensing methodology to understand the research progresses and trends.  相似文献   

16.
The good,the bad,and the tiny: a review of microflow cytometry   总被引:2,自引:1,他引:1  
Recent developments in microflow cytometry have concentrated on advancing technology in four main areas: (1) focusing the particles to be analyzed in the microfluidic channel, (2) miniaturization of the fluid-handling components, (3) miniaturization of the optics, and (4) integration and applications development. Strategies for focusing particles in a narrow path as they pass through the detection region include the use of focusing fluids, nozzles, and dielectrophoresis. Strategies for optics range from the use of microscope objectives to polymer waveguides or optical fibers embedded on-chip. While most investigators use off-chip fluidic control, there are a few examples of integrated valves and pumps. To date, demonstrations of applications are primarily used to establish that the microflow systems provide data of the same quality as laboratory systems, but new capabilities-such as automated sample staining-are beginning to emerge. Each of these four areas is discussed in detail in terms of the progress of development, the continuing limitations, and potential future directions for microflow cytometers.  相似文献   

17.
Mass spectrometry (MS) has become a key tool for the characterization of biologically relevant molecules in the last decade. Due to the complexity of most biological samples an upstream separation is essential. Capillary electrophoresis (CE) has gained much interest due to its high separation efficiency, speed, and often complementary selectivity to liquid chromatography. We describe the state-of-the-art of on-line CE-MS for the analysis of molecules of biological origin. The characterization of peptides, including the study of post-translational modifications, intact proteins, oligonucleotides, and related interaction studies are reviewed. Relevant publications are summarized in tables, including some important method parameters. Key applications are discussed with respect to the advantages and limitations of CE-MS. Coupling interfaces, preconcentration techniques, capillary coatings, and the different CE techniques, e.g., capillary zone electrophoresis, capillary isoelectric focusing, capillary gel electrophoresis, etc. are briefly discussed against the background of their bioanalytical applications.  相似文献   

18.
Capillary isoelectric focusing (cIEF) coupled to mass spectrometry (cIEF-MS) offers a potentially very powerful analytical tool for the investigation of physiological samples. The high resolving capabilities of cIEF in combination with the high sensitivity and enhanced structural information provided by MS is highly desirable for the analysis of complex samples. However a major limitation of the technique has always been the requirement to desalt samples prior to cIEF analysis. Such desalting normally occurs off-line and therefore adds complexity and the possibility of sample loss or contamination. In this study we demonstrate the use of a modified cIEF protocol which enables samples containing physiological levels of salts to be desalted on-line, within the cIEF capillary. This new technique is very fast and efficient, allowing the direct analysis of a physiologically derived fluid that contains a complex mix of proteins, such as human cerebrospinal fluid by cIEF-MS in a single step experiment.  相似文献   

19.
In recent years, chemiluminescence (CL)-based detection coupled to capillary electrophoresis (CE) as separation technique has attracted much interest due to new advances in home-made configurations, sample-treatment techniques for application to real matrixes, development of a commercial instrument and use of miniaturization techniques to obtain micro total analysis systems incorporating CE separation and CL detection in microchips. We present some developments, key strategies and selected analytical applications of CE-CL since the year 2000 in diverse fields (e.g., clinical and pharmaceutical, environmental or food analysis).  相似文献   

20.
Ren K  Liang Q  Yao B  Luo G  Wang L  Gao Y  Wang Y  Qiu Y 《Lab on a chip》2007,7(11):1574-1580
A novel miniaturized, integrated whole-column imaging detection (WCID) system on a microchip is presented. In this system, a program controlled organic light emitting diode (OLED) array was used as a spatial-scanning light source, to achieve imaging by the time sequence of the excited fluorescence. By this mechanism, a photomultiplier tube (PMT) instead of a charge coupled detector (CCD) can be applied to the imaging. Unlike conventional systems, no lenses, fibers or any mechanical components are required either. The novel flat light source provides uniform excitation light without size limitations and outputs a stronger power by pulse driving. The scanning mode greatly reduced the power consumption of the light source, which is valuable for a portable system. Meanwhile, this novel simplified system has a broader linear range, higher sensitivity and higher efficiency in data collection. Isoelectric focusing of R-phycoerythrin (PE) and monitoring of the overall process with WCID were performed on this system. The limit of detection (LOD) was 38 ng mL(-1) or 3.2 pg at 85 nL per column injection of PE. The system provides a technique for WCID capillary isoelectric focusing (cIEF) on chip and can be used for throughput analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号