首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Confined flow of polymer blends   总被引:1,自引:0,他引:1  
The influence of confinement on the steady-state morphology of two different emulsions is investigated. The blends, made from polybutene (PB) in polydimethylsiloxane (PDMS) and polybutadiene (PBD) in PDMS, are sheared between two parallel plates, mostly with a standard gap spacing of 40 microm, in the range of shear rates at which the transition from "bulk" behavior toward "confined" behavior is observed. For both cases, the influence of the concentration was systematically investigated, as well as the shear rate effects on the final steady-state morphology. By decreasing the shear rate, for each blend, the increasing droplets, i.e., increasing confinement for a fixed gap spacing, arrange themselves first into two layers, and when the degree of confinement reaches an even higher value, a single layer of droplets is formed. The ratio between the drop diameters and the gap spacing at which this transition occurs is always lower than 0.5. While decreasing the shear rate, the degree of confinement increases due to drop coalescence. Droplets arrange themselves in superstructures like ordered pearl necklaces and, at the lower shear rates, strings. The aspect ratio and the width of the droplet obtained from optical micrographs are compared to predictions of the single droplet Maffettone-Minale model (MM model(1)). It is found that the theory, meant for unconfined shear flow, is not able to predict the drop deformation when the degree of confinement is above a critical value that depends on the blends considered and the shear rate applied. A recently developed extension of the MM model is reported by Minale (M model(2)) where the effect of the confinement is included by using the Shapira-Haber correction.3 Further extending this M model, by incorporating an effective viscosity as originally proposed by Choi and Showalter,4 we arrive at the mM model that accurately describes the experiments of blends in confined flow.  相似文献   

2.
The free energy of interaction between two nanometric clay platelets immersed in an electrolyte solution has been calculated using Monte Carlo simulations as well as direct integration of the configurational integral. Each platelet has been modeled as a collection of charged spheres carrying a unit charge the face of a platelet contains negative charges, and the edge, positive charges. The calculations predict that a configuration of "overlapping coins" is the global free energy minimum at intermediate salt concentrations (10-100 mM). A second weaker minimum, corresponding to the well-known "house of cards" configuration, also appears in this salt interval. At low salt concentrations the electrostatic repulsion dominates, while at intermediate concentrations electrostatic interactions alone can create a net attraction between the platelets. At sufficiently high salt content (>200 mM), the van der Waals interaction takes over and the net interaction becomes attractive at essentially all separations. From the calculated free energy and its derivative, we can derive a yield stress and elasticity modulus in fair agreement with experiment. The roughness of the platelets affects the quantitative behavior of the free energy of interaction but does not alter the results in a qualitative way. From the variation of the free energy of interaction, we would tentatively describe the phase behavior as follows: At low salt, the interaction is strongly repulsive and the dispersion should appear as a solid ("repulsive gel"). With increasing salt concentration, the repulsion is weakened and a liquid phase appears ("sol"). A further increase of the salt content leads a second solid phase ("attractive gel") governed by attractive interactions between the platelets. Finally, at sufficiently high salinity, the clay precipitates due to van der Waals forces.  相似文献   

3.
The intercalation of solvent particles and polymer chains of concentration Cw = 0.2 and Cp = 0.2, respectively, in a layer of (4) clay platelets is studied by a Monte Carlo simulation on a cubic lattice. Polymer chains and platelets are modeled by bond fluctuations. Besides the excluded volume, a set of polymer-clay (cs) and solvent-clay (ws) interactions with (i) cs = 1, ws = −2, (ii) cs = −2, ws = 1 and (iii) cs = ws = −2 are considered. The global dynamics of platelets is constrained due to the presence of three components, i.e., solvent, polymer, and platelets, which retain their interstitial spacing with well-defined galleries. Intercalation of solvent particles and polymer chains (low molecular weight) occurs with their attractive interaction with the platelets, which further reinforces the layered clay morphology. The density profiles of the solvent particles are similar to previous studies with platelets in a mobile solvent. The density profile of polymer chains differs considerably from the platelets in a polymer matrix alone, particularly with its attractive interaction (ii). For the same attractive interaction of solvent and polymer chains with the clay platelets (iii), the solvent particles (the smallest constituents) intercalate the fastest in the clay galleries, whereas the intercalation of polymer chains decreases with their molecular weight. The polymer density profiles, both longitudinal (x) and transverse (y), show maxima peaks around outer platelets (surface) of the layer and decay sharply both in the adjacent galleries and in the bulk. The amplitude of oscillation in the transverse density profiles, a measure of the degree of intercalation, decreases with increasing molecular weight of the polymer. The intercalation of the polymer is driven by its attractive interaction at the low molecular weight, but reduces considerably at high molecular weight because of both entanglement and larger radius of gyration. Variations of the gyration radius of the diffusing polymer chains with molecular weight and interaction with the clay are consistent with the results of their corresponding density profiles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2487–2500, 2009  相似文献   

4.
For nearly the past two decades, significant effort has been devoted to pursuing an understanding of the glass transition temperature and associated dynamics of polymers confined to the nanoscale. Without question, we know more about the glassy properties of confined polymers today than we knew two decades ago or even a decade ago. Much of our understanding has been obtained via studies on thin polymer films, as they are facile to process and are of substantial technological importance. Nevertheless, studies on polymers confined to other geometries are becoming increasingly more important as we pursue questions difficult to address using thin films and as technology demands the use of confined polymers beyond thin films. In this feature article, we highlight the impact of nanoscale confinement on the glassy properties of polymer nanoparticles. Although the emphasis is placed on contributions from our work, a discussion of the related literature is also presented. Our aim is to elucidate commonalities or fundamental differences in the deviations of glassy properties from the bulk for polymers confined to different geometries. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

5.
We report on the controlled chemical grafting of well-defined polymer chains onto individual montmorillonite-type clay nanoplatelets and the direct visualization of the formed hybrid material at the nanoscale level. Our approach is based on the use of a surfactant mixture that contains varying proportions of hydroxyl-substituted alkylammonium and unsubstituted alkylammonium cations to exchange the initial Na(+) counterions of the natural montmorillonite. This allows for the exchange of Na(+) by a tunable amount of hydroxyl functions at the surface of the clays. Those functions are then derivatized into aluminum alkoxides in order to initiate the ring-opening polymerization of epsilon-caprolactone directly from the clay surface that was swollen in an organic solvent. Atomic force microscopy measurements on the resulting polymer-grafted nanoplatelets demonstrate the strong dependence of the coating of the individual clay particles with the composition of the surfactant mixture used for the cationic exchange. This allows for the generation of a range of morphologies varying from polymer islands distributed over the clay surface to homogeneous polymer layers thoroughly coating the platelets. Finally, the control that is achievable over the synthesis of this new family of organic-inorganic nanohybrid materials has been extended to the surface grafting of semicrystalline poly(epsilon-caprolactone)-poly(lactic acid) diblock copolymers with defined compositions.  相似文献   

6.
Montmorillonite platelets were modified with ammonium ions of different chemical architectures in order to study the effect of ammonium ions on the extent of surface reactions with long chain fatty acids. Varying number of hydroxyl groups and the presence of octadecyl chains in the ammonium modifications were the attributes studied. The outcome of the surface esterification was analyzed by thermogravimetric studies, IR spectroscopy and wide angle X-ray diffraction. The extent of surface reaction was observed to be extremely dependent on the chemical architecture of the ammonium ion attached to the surface. Different resulting interlayer polarity and swelling of the modified clay in the solvent owing to the solvent-modification interactions led to different extents of surface esterification. In general, it was observed that increasing the number of hydroxyl groups in combination with the octadecyl chain present in the modification was successful in generating high density brushes on the clay surface which also was responsible for achieving higher basal plane spacing of the montmorillonite platelets owing to the reduction of electrostatic interactions holding them.  相似文献   

7.
We report the synthesis and characterization of polymer/Laponite nanocomposite latex particles through emulsion polymerization using organically modified Laponite clay platelets as seeds. Two approaches were adopted for the organic modification of Laponite. The first one is based on the grafting of either γ-methacryloyloxy propyl dimethyl-methoxysilane (γ-MPDES) or γ-methacryloyloxy propyl triethoxysilane (γ-MPTES) on the clay edges. The other strategy consists in exchanging the clay interlayer sodium ions by either a free radical initiator, 2,2-azobis(2-methyl propionamidine)hydrochloride (AIBA) or a cationic vinyl monomer, 2-(methacryloyloxy)ethyl trimethyl ammonium chloride (MADQUAT). The grafting was characterized both qualitatively using FTIR and quantitatively using elemental analysis or UV analysis. The results show that the degree of functionalization depends on the nature of the organic modifier. Before performing the emulsion polymerization reaction, the functionalized clay platelets were successfully dispersed in water. Nanocomposite latexes were then synthesized using a mixture of styrene (Styr) and butyl acrylate (BA) and sodium dodecyl sulphate (SDS) as anionic surfactant. An important result of the present work is that clay redispersion in water is a key step of the overall process. The larger the size of the clay aggregates, the poorer the stability of the resulting latex suspension. The morphology and mechanism of formation of the nanocomposite particles are discussed.  相似文献   

8.
Nanocomposites of polystyrene, high impact polystyrene, acrylonitrile-butadiene-styrene terpolymer, polypropylene, and polyethylene were prepared using a methyl methacrylate oligomerically-modified clay by melt blending and the thermal stability and fire retardancy were studied. These nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis and cone calorimetry. The results show a mixed morphology, depending on the polymer.  相似文献   

9.
Using an atomic force microscope (AFM) the interaction between an AFM tip and different planar solid surfaces have been measured across a long-chain poly(dimethyl siloxane) (PDMS, MW = 18,000 g/mol), a short-chain PDMS (MW = 4200 g/mol), a poly(ethylmethyl siloxane) (PEMS, MW = 16,800 g/mol), and a diblock copolymer consisting of one PDMS and one PEMS block (PDMS-b-PEMS, MW = 15,100 g/mol). The interaction changed significantly during the first 10 h after immersing the solids in the polymer melt. This demonstrates that the time scale of structural changes at a solid surface is much slower than in the bulk. On mica and silicon oxide both polymers formed an immobilized “pinned” layer beyond which a monotonically decaying repulsive force was observed. Attractive forces were observed with short-chain PDMS on silicon oxide and PEMS on mica and silicon oxide. On the basal plane of graphite PEMS caused a stable, exponentially decaying oscillatory force.  相似文献   

10.
11.
A new class of organic-inorganic hybrid aerogels having small pores and narrow pore size distribution are synthesized from well-dispersed clay platelets in water as base catalyst. Clay-catalyzed organic gels have strong advantage in controlling nanopore structure as well as reducing drying shrinkage by reinforcing the organic network with inorganic platelets.  相似文献   

12.
This paper describes a multiscale approach used to model polymer clay nanocomposites (PCNs) based on a new altered phase concept. Constant-force steered molecular dynamics (SMD) is used to evaluate nanomechanical properties of the constituents of intercalated clay units in PCNs, which were used in the finite element model. Atomic force microscopy and nanoindentation techniques provided additional input to the finite element method (FEM) model. FEM is used to construct a representative PCN model that simulates the composite response of intercalated clay units and the surrounding polymer matrix. From our simulations we conclude that, in order to accurately predict mechanical response of PCNs, it is necessary to take into account the molecular-level interactions between constituents of PCN, which are responsible for the enhanced nanomechanical properties of PCNs. This conclusion is supported by our previous finding that there is a change in crystallinity of polymeric phase due to the influence of intercalated clay units. The extent of altered polymeric phase is obtained from observations of a zone of the altered polymeric phase surrounding intercalated clay units in the "phase image" of PCN surface, obtained using an atomic force microscope (AFM). An accurate FEM model of PCN is constructed that incorporates the zone of the altered polymer. This model is used to estimate elastic modulus of the altered polymer. The estimated elastic modulus for the altered polymer is 4 to 5 times greater than that of pure polymer. This study indicates that it is necessary to take into account molecular interactions between constituents in nanocomposites due to the presence of altered phases, and furthermore provides us with a new direction for the modeling and design of nanocomposites.  相似文献   

13.
This paper demonstrates that a covalent bonding between clay platelets and polymer chains is not necessary for a successful encapsulation of the inorganic compounds through emulsion polymerization. In the work described in this paper, the chemical modification of clay was performed using two kinds of titanate coupling agents: titanium IV, (2-propanolato)tris(2-propanoata-O), 2-(2-methoxyethoxy) ethanol and titanium IV, 2-propanolato,tris(isooctadecanoato-O), where the former is saturated and the second has unsaturated alkyl groups. The hydrolytic stability of the organoclays thus synthesized was thereafter investigated. It was found that the titanate modifiers were highly sensitive towards hydrolysis as evidenced by Fourier transform infrared and thermal gravimetry analyses. The effect of a chemical modification step on clay encapsulation was studied by comparing the results obtained between reactions using the synthesized organoclays and the ones using native clay platelets. It was found that the incorporation of polymerizable double bonds on clay platelets was unnecessary to achieve successful encapsulation and that, surprisingly, the chemical modification step could be omitted for the synthesis of clay-containing latex particles. The effects of monomer feed composition, i.e., monomer mixtures consisting of different weight ratios methyl methacrylate/butyl acrylate, and process types on clay encapsulation were also investigated. Both parameters were found to have a strong influence on clay encapsulation. Finally, the surfactant concentration and the surfactant type were statistically found to have a significant effect on the clay/polymer interaction as evidenced by the results of glass transition temperatures of dried latex/clay nanocomposites powders.  相似文献   

14.
The influence of confinement in the supramolecular β-cyclodextrin nanocavity on the excited state torsional dynamics of the amyloid fibril sensor, Thioflavin-T, is explored using subpicosecond fluorescence up-conversion spectroscopy. In the presence of β-cyclodextrin, the emission intensity and the fluorescence lifetime of Thioflavin-T significantly increases, indicating the confinement effect of the nanocage on the photophysical behaviour of the dye. Detailed time-resolved fluorescence studies show an appreciable dynamic Stokes' shift for the dye in the β-cyclodextrin nanocavity. Analysis of the time-resolved area normalized emission spectra (TRANES) indicates the formation of an emissive TICT state. The rate of formation of the TICT state, as calculated from the time dependent changes in the peak frequency and the width of the emission spectra, is found to be substantially slower in the β-cyclodextrin nanocavity compared to that in bulk water. Present results indicate that ultrafast torsional motion in Thioflavin-T is significantly retarded due to confinement by the β-cyclodextrin nanocavity.  相似文献   

15.
Melt intercalation of the methylsilylated organoclays with polar polymers such as SAN was examined to verify the adhesive role of guest polymeric chains between hydrophilic clay layers, so-called “glue effect” on intercalation behavior. Once methylsilylated organoclay was melt-blended with SAN, it was found that the mixture presented significant retardation of increase of interlayer spacing, d001 with heating time, and a noticeable decrease of d001 after the methylsilylation of organoclay, implying that the diffusion of SAN was highly suppressed by the decrease of polar interaction force caused by conversion of OH to methylsiloxyl groups. However, when applying shear force for the methylsilylated organoclay/SAN nanocomposites during melt intercalation, a noticeable increase of d001 was observed, expressing that intercalation of clay by SAN occurred much more effectively because of the reduction of gluing force between host clay and guest polymers, which was well supported by dramatic improvements of mechanical properties after methylsilylation of organoclays. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2367–2372, 2004  相似文献   

16.
Polymer nanocomposite gels (NC gels), a kind of typical soft materials, can be synthesized through free-radical polymerization of water-soluble monomers in the presence of nanoclay in aqueous system. Here, novel natural tube-like nanoparticles, halloysite nanotubes (HNTs), are firstly used as multifunctional cross-linkers for polyacrylamide (PAAm) to form a new type of organic/inorganic hybrid hydrogels. Significant improvements in mechanical properties of the PAAm-HNTs NC gels are found by the addition of HNTs as shown by the static mechanical testing and dynamic viscoelasticity measurement. HNTs are uniformly dispersed in the NC gels from the morphological result. HNTs can be intercalated by PAAm chains as observed by the X-ray diffraction result. Hydrogen bonding interactions between HNTs and PAAm are confirmed by the infrared spectroscopy and X-ray photoelectron spectroscopy. The maximum equilibrium degree of swelling (EDS) for the NC gel is 4000% and the EDS decreases with the concentration of clay nanotubes. The present work provides a novel routine for preparing NC gels using “green” one-dimensional nanoparticle. The prepared NC gels have promising application in biomedical areas due to the superior mechanical properties of the gels and good biocompatibility of HNTs.  相似文献   

17.
The orientation of platelets in micro-meter-thick polymer-clay nanocomposite films was investigated with small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). The films with various clay contents (15–60% by mass fraction) were prepared by a layer-by-layer approach from polymer-clay solutions that led to the formation of a high degree of orientation in both polymer and clay platelets. Shear-induced orientation of polymer-clay solutions is compared with the orientation of polymer-clay films. SANS, SAXS, and WAXD, with beam configurations in and perpendicular to the spread direction of the film, were used to determine the structure and orientation of platelets. In all films, the clay platelets oriented preferentially in the plane of the film. The observed differences in semidilute solutions, with clay surface normal parallel to the vorticity direction, versus bulk films and with clay surface normal parallel to the shear gradient direction at clay mass fractions of 40 and 60%, were attributed to the collapses of clay platelet during the drying process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3237–3248, 2003  相似文献   

18.
The structure and dynamics of polymer-grafted two-dimensional silicate layers in solution were investigated. The geometry of the individual silicate layers was examined by looking at both polarized and depolarized light scattering from dilute solutions, while higher-concentration systems were used to study the interaction and dynamics of polymer-grafted silicate layers in suspension. The form factor for an oblate ellipsoid was used to fit the polarized intensity profile, and values of a approximately 80 nm and b approximately 380 nm for the semi-axes were obtained. The 80 nm value compares reasonably with the dimensions of the polymer brushes grafted on the surface of the silicate layers. The modulus of the grafted silicate in solution, as determined by Brillouin scattering, is of the order of 10 GPa. The cooperative diffusion mechanism, typical of interacting polymer chains, is suppressed due to the high polymer osmotic pressure. The osmotic pressure is also responsible for the weak interpenetration of the densely grafted polymer chains on the surface of the silicate layers. The scattering data indicates that the polymer-grafted nanoparticles move via collective diffusion and experience significant decrease in mobility above their overlap concentration.  相似文献   

19.
A combination of plasma surface modification of polymer thin films and colloidal nanosphere lithography was used to fabricate two-dimensional nanopore arrays as protein nanocontainers.  相似文献   

20.
The effects of replacing the native Na(+) counter ions associated with the clay platelets by various other cations on the swelling behavior of nanocomposite (NC) gels consisting of an organic (polymer)/inorganic (clay) network were investigated. The negative surface charge of the clay platelet conferred an ionic nature on the NC gels making them a type of polyelectrolyte gel; consequently, the swelling behavior of the NC gels was strongly influenced by the valence of the co-existing counter ions. NC gels containing monovalent cations such as Na(+), K(+) and Li(+) exhibited large swellings and subsequent deswelling in water after attaining maximum degrees of swelling. In contrast, introduction of multivalent cations such as Ca(2+), Mg(2+), and Al(3+) into NC gels depressed markedly both the swelling and subsequent deswelling. The decreased swelling and suppressed deswelling with multivalent ions were strongly influenced by the initial gel state and result from the formation of additional cross-links through ionic interactions between the clay platelets and the multivalent cations. Also, the similar swelling behaviors were observed for all NC gels with different clay concentration. Further, reversible absorption/desorption and selective absorption of multivalent cations were observed for the NC gels examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号