首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Let c(n, q) be the number of connected labeled graphs with n vertices and q ≤ N = (2n ) edges. Let x = q/n and k = q ? n. We determine functions wk ? 1. a(x) and φ(x) such that c(n, q) ? wk(qN)enφ(x)+a(x) uniformly for all n and qn. If ? > 0 is fixed, n→ ∞ and 4q > (1 + ?)n log n, this formula simplifies to c(n, q) ? (Nq) exp(–ne?2q/n). on the other hand, if k = o(n1/2), this formula simplifies to c(n, n + k) ? 1/2 wk (3/π)1/2 (e/12k)k/2nn?(3k?1)/2.  相似文献   

2.
It is known that for all monotone functions f : {0, 1}n → {0, 1}, if x ∈ {0, 1}n is chosen uniformly at random and y is obtained from x by flipping each of the bits of x independently with probability ? = n, then P[f(x) ≠ f(y)] < cn?α+1/2, for some c > 0. Previously, the best construction of monotone functions satisfying P[fn(x) ≠ fn(y)] ≥ δ, where 0 < δ < 1/2, required ? ≥ c(δ)n, where α = 1 ? ln 2/ln 3 = 0.36907 …, and c(δ) > 0. We improve this result by achieving for every 0 < δ < 1/2, P[fn(x) ≠ fn(y)] ≥ δ, with:
  • ? = c(δ)n for any α < 1/2, using the recursive majority function with arity k = k(α);
  • ? = c(δ)n?1/2logtn for t = log2 = .3257 …, using an explicit recursive majority function with increasing arities; and
  • ? = c(δ)n?1/2, nonconstructively, following a probabilistic CNF construction due to Talagrand.
We also study the problem of achieving the best dependence on δ in the case that the noise rate ? is at least a small constant; the results we obtain are tight to within logarithmic factors. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 23: 333–350, 2003  相似文献   

3.
We investigate the problem that at least how many edges must a maximal triangle-free graph on n vertices have if the maximal valency is ≤D. Denote this minimum value by F(n, D). For large enough n, we determine the exact value of F(n, D) if D ≥ (n ? 2)/2 and we prove that lim F(n, cn)/n = K(c) exists for all 0 < c with the possible exception of a sequence ck → 0. The determination of K(c) is a finite problem on all intervals [γ, ∞). For D = cn?, 1/2 < ? < 1, we give upper and lower bounds for F(n, D) differing only in a constant factor. (Clearly, D < (n - 1)1/2 is impossible in a maximal triangle-free graph.)  相似文献   

4.
In this article Turán-type problems for several triple systems arising from (k, k ? 2)-configurations [i.e. (k ? 2) triples on k vertices] are considered. It will be shown that every Steiner triple system contains a (k, k ? 2)-configuration for some k < c log n/ log log n. Moreover, the Turán numbers of (k, k ? 2)-trees are determined asymptotically to be ((k ? 3)/3).(n2) (1?o(1)). Finally, anti-Pasch hypergraphs avoiding (5, 3) -and (6, 4)-Configurations are considered. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Let G be a simple undirected n-vertex graph with the characteristic polynomial of its Laplacian matrix . It is well known that for trees the Laplacian coefficient cn-2 is equal to the Wiener index of G, while cn-3 is equal to the modified hyper-Wiener index of graph. Using a result of Zhou and Gutman on the relation between the Laplacian coefficients and the matching numbers in subdivided bipartite graphs, we characterize the trees with k leaves (pendent vertices) which simultaneously minimize all Laplacian coefficients. In particular, this extremal balanced starlike tree S(n,k) minimizes the Wiener index, the modified hyper-Wiener index and recently introduced Laplacian-like energy. We prove that graph S(n,n-1-p) has minimal Laplacian coefficients among n-vertex trees with p vertices of degree two. In conclusion, we illustrate on examples of these spectrum-based invariants that the opposite problem of simultaneously maximizing all Laplacian coefficients has no solution, and pose a conjecture on extremal unicyclic graphs with k leaves.  相似文献   

6.
Let Sn be the sum of n i.i.d.r.v. and let 1(-∞,x)(·) be the indicator function of the interval (-∞, x). Then the sequence 1(-∞, x)(Sn/√n) does not converge for any x. Likewise the arithmetic means of this sequence converge only with probability zero. But the logarithmic means converge with probability one to the standard normal distribution Ø(x). Then for any bounded and a.e. continuous function a(y) the logarithmic means of a(Sn/√n) converge a.s. to a = ∫a(y)dØ(y). The arithmetic means of a(Snk/√n) converge to the same limit a for all subsequences nk = [ck], c > 1.  相似文献   

7.
For each of the two models of a sparse random graph on n vertices, G(n, # of edges = cn/2) and G(n, Prob (edge) = c/n) define tn(k) as the total number of tree components of size k (1 ≤ k ≤ n). the random sequence {[tn(k) - nh(k)]n?1/2} is shown to be Gaussian in the limit n →∞, with h(k) = kk?2ck?1e?kc/k! and covariance function being dependent upon the model. This general result implies, in particular, that, for c> 1, the size of the giant component is asymptotically Gaussian, with mean nθ(c) and variance n(1 ? T)?2(1 ? 2Tθ)θ(1 ? θ) for the first model and n(1 ? T)?2θ(1 ? θ) for the second model. Here Te?T = ce?c, T<1, and θ = 1 ? T/c. A close technique allows us to prove that, for c < 1, the independence number of G(n, p = c/n) is asymptotically Gaussian with mean nc?1(β + β2/2) and variance n[c?1(β + β2/2) ?c?2(c + 1)β2], where βeβ = c. It is also proven that almost surely the giant component consists of a giant two-connected core of size about n(1 ? T)β and a “mantle” of trees, and possibly few small unicyclic graphs, each sprouting from its own vertex of the core.  相似文献   

8.
Some new oscillation and nonoscillation criteria for the second order neutral delay difference equation
D( cn D( yn \text + pn yn - k ) ) + qn yn + 1 - mb = 0,n \geqslant n0 \Delta \left( {c_n \Delta \left( {y_n {\text{ + }}p_n y_n - k} \right)} \right) + q_n y_{n + 1 - m}^\beta = 0,n \geqslant n_0  相似文献   

9.
We study the cover time of a random walk on the largest component of the random graph Gn,p. We determine its value up to a factor 1 + o(1) whenever np = c > 1, c = O(lnn). In particular, we show that the cover time is not monotone for c = Θ(lnn). We also determine the cover time of the k‐cores, k ≥ 2. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

10.
Abstract. For natural numbers n we inspect all factorizations n = ab of n with aba \le b in \Bbb N\Bbb N and denote by n=an bnn=a_n b_n the most quadratic one, i.e. such that bn - anb_n - a_n is minimal. Then the quotient k(n) : = an/bn\kappa (n) := a_n/b_n is a measure for the quadraticity of n. The best general estimate for k(n)\kappa (n) is of course very poor: 1/n £ k(n) £ 11/n \le \kappa (n)\le 1. But a Theorem of Hall and Tenenbaum [1, p. 29], implies(logn)-d-e £ k(n) £ (logn)-d(\log n)^{-\delta -\varepsilon } \le \kappa (n) \le (\log n)^{-\delta } on average, with d = 1 - (1+log2  2)/log2=0,08607 ?\delta = 1 - (1+\log _2 \,2)/\log 2=0,08607 \ldots and for every e > 0\varepsilon >0. Hence the natural numbers are fairly quadratic.¶k(n)\kappa (n) characterizes a specific optimal factorization of n. A quadraticity measure, which is more global with respect to the prime factorization of n, is k*(n): = ?1 £ ab, ab=n a/b\kappa ^*(n):= \textstyle\sum\limits \limits _{1\le a \le b, ab=n} a/b. We show k*(n) ~ \frac 12\kappa ^*(n) \sim \frac {1}{2} on average, and k*(n)=W(2\frac 12(1-e) log n/log 2n)\kappa ^*(n)=\Omega (2^{\frac {1}{2}(1-\varepsilon ) {\log}\, n/{\log} _2n})for every e > 0\varepsilon>0.  相似文献   

11.
Let S(n, k) denote Stirling numbers of the second kind, and Kn be the integer(s) such that S(n, Kn) ? S(n, k) for all k. We determine the value(s) of Kn to within a maximum error of 1.  相似文献   

12.
In the case where a 2π-periodic function f is twice continuously differentiable on the real axis ℝ and changes its monotonicity at different fixed points y i ∈ [− π, π), i = 1,…, 2s, s ∈ ℕ (i.e., on ℝ, there exists a set Y := {y i } i∈ℤ of points y i = y i+2s + 2π such that the function f does not decrease on [y i , y i−1] if i is odd and does not increase if i is even), for any natural k and n, nN(Y, k) = const, we construct a trigonometric polynomial T n of order ≤n that changes its monotonicity at the same points y i Y as f and is such that
*20c || f - Tn || £ \fracc( k,s )n2\upomega k( f",1 \mathord\vphantom 1 n n ) ( || f - Tn || £ \fracc( r + k,s )nr\upomega k( f(r),1 \mathord/ \vphantom 1 n n ),    f ? C(r),    r 3 2 ), \begin{array}{*{20}{c}} {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {k,s} \right)}}{{{n^2}}}{{{\upomega }}_k}\left( {f',{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right)} \\ {\left( {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {r + k,s} \right)}}{{{n^r}}}{{{\upomega }}_k}\left( {{f^{(r)}},{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right),\quad f \in {C^{(r)}},\quad r \geq 2} \right),} \\ \end{array}  相似文献   

13.
For x and y vertices of a connected graph G, let TG(x, y) denote the expected time before a random walk starting from x reaches y. We determine, for each n > 0, the n-vertex graph G and vertices x and y for which TG(x, y) is maximized. the extremal graph consists of a clique on ?(2n + 1)/3?) (or ?)(2n ? 2)/3?) vertices, including x, to which a path on the remaining vertices, ending in y, has been attached; the expected time TG(x, y) to reach y from x in this graph is approximately 4n3/27.  相似文献   

14.
In this paper we investigate the upper bounds on the numbers of transitions of minimum and maximum spanning trees (MinST and MaxST for short) for linearly moving points. Here, a transition means a change on the combinatorial structure of the spanning trees. Suppose that we are given a set ofn points ind-dimensional space,S={p 1,p 2, ...p n }, and that all points move along different straight lines at different but fixed speeds, i.e., the position ofp i is a linear function of a real parametert. We investigate the numbers of transitions of MinST and MaxST whent increases from-∞ to +∞. We assume that the dimensiond is a fixed constant. Since there areO(n 2) distances amongn points, there are naivelyO(n 4) transitions of MinST and MaxST. We improve these trivial upper bounds forL 1 andL distance metrics. Letk p (n) (resp. ) be the number of maximum possible transitions of MinST (resp. MaxST) inL p metric forn linearly moving points. We give the following results in this paper: κ1(n)=O(n 5/2 α(n)),κ (n)=O(n 5/2 α(n)), , and where α(n) is the inverse Ackermann's function. We also investigate two restricted cases, i.e., thec-oriented case in which there are onlyc distinct velocity vectors for movingn points, and the case in which onlyk points move.  相似文献   

15.
Rank‐width of a graph G, denoted by rw (G), is a width parameter of graphs introduced by Oum and Seymour [J Combin Theory Ser B 96 (2006), 514–528]. We investigate the asymptotic behavior of rank‐width of a random graph G(n, p). We show that, asymptotically almost surely, (i) if p∈(0, 1) is a constant, then rw (G(n, p)) = ?n/3??O(1), (ii) if , then rw (G(n, p)) = ?1/3??o(n), (iii) if p = c/n and c>1, then rw (G(n, p))?rn for some r = r(c), and (iv) if p?c/n and c81, then rw (G(n, p))?2. As a corollary, we deduce that the tree‐width of G(n, p) is linear in n whenever p = c/n for each c>1, answering a question of Gao [2006]. © 2011 Wiley Periodicals, Inc. J Graph Theory.  相似文献   

16.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

17.
We present a new condition on the degree sums of a graph that implies the existence of a long cycle. Let c(G) denote the length of a longest cycle in the graph G and let m be any positive integer. Suppose G is a 2-connected graph with vertices x1,…,xn and edge set E that satisfies the property that, for any two integers j and k with j < k, xjxk ? E, d(xi) ? j and d(xk) ? K - 1, we have (1) d(xi) + d(xk ? m if j + k ? n and (2) if j + k < n, either m ? n or d(xj) + d(xk) ? min(K + 1,m). Then c(G) ? min(m, n). This result unifies previous results of J.C. Bermond and M. Las Vergnas, respectively.  相似文献   

18.

We consider difference equations of order k n+k ≥ 2 of the form: yn+k = f(yn,…,yn+k-1), n= 0,1,2,… where f: D kD is a continuous function, and D?R. We develop a necessary and sufficient condition for the existence of a symmetric invariant I(x 1,…,xk ) ∈C[Dk,D]. This condition will be used to construct invariants for linear and rational difference equations. Also, we investigate the transformation of invariants under invertible maps. We generalize and extend several results that have been obtained recently.  相似文献   

19.
Let W n = K 1 ? C n?1 be the wheel graph on n vertices, and let S(n, c, k) be the graph on n vertices obtained by attaching n-2c-2k-1 pendant edges together with k hanging paths of length two at vertex υ 0, where υ 0 is the unique common vertex of c triangles. In this paper we show that S(n, c, k) (c ? 1, k ? 1) and W n are determined by their signless Laplacian spectra, respectively. Moreover, we also prove that S(n, c, k) and its complement graph are determined by their Laplacian spectra, respectively, for c ? 0 and k ? 1.  相似文献   

20.
Let p = p(n) be a function of n with 0<p<1. We consider the random graph model ??(n, p); that is, the probability space of simple graphs with vertex-set {1, 2,…, n}, where two distinct vertices are adjacent with probability p. and for distinct pairs these events are mutually independent. Archdeacon and Grable have shown that if p2(1 ? p2) ?? 8(log n)4/n. then the (orientable) genus of a random graph in ??(n, p) is (1 + o(1))pn2/12. We prove that for every integer i ? 1, if n?i/(i + 1) «p «n?(i ? 1)/i. then the genus of a random graph in ??(n, p) is (1 + o(1))i/4(i + 2) pn2. If p = cn?(i?1)/o, where c is a constant, then the genus of a random graph in ??(n, p) is (1 + o(1))g(i, c, n)pn2 for some function g(i, c, n) with 1/12 ? g(i, c, n) ? 1. but for i > 1 we were unable to compute this function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号