首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide fractionation is extremely important for the comprehensive analysis of complex protein mixtures. Although a few comparisons of the relative separation efficiencies of 2‐D methodologies using complex biological samples have appeared, a systematic evaluation was conducted in this study. Four different fractionation methods, namely strong‐cation exchange, hydrophilic interaction chromatography, alkaline‐RP and solution isoelectric focusing, which can be used prior to LC‐MS/MS analysis, were compared. Strong‐cation exchange × RPLC was used after desalting the sample; significantly more proteins were identified, compared with the nondesalted sample (1990 and 1375). We also found that the use of a combination of analytical methods resulted in a dramatic increase in the number of unique peptides that could be identified, compared with only a small increase in protein levels. The increased number of distinct peptides that can be identified is especially beneficial, not only for unequivocally identifying proteins but also for proteomic studies involving posttranslational modifications and peptide‐based quantification approaches using stable isotope labeling. The identification and quantification of more peptides per protein provide valuable information that improves both the quantification of, and confidence of protein identification.  相似文献   

2.
We have elaborated a protocol for the fractionation of both hydrophilic and hydrophobic proteins using as a model the matrix and membrane compartments of highly purified rat liver peroxisomes because of their distinct proteomes and characteristic composition with a high quota of basic proteins. To keep highly hydrophobic proteins in solution, an urea/thiourea/detergent mixture, as used in traditional gel-based isoelectric focusing (IEF), was added to the electrophoresis buffer. Electrophoresis was conducted in the ProTeam free-flow electrophoresis (FFE) apparatus of TECAN separating proteins into 96 fractions on a pH 3-12 gradient. Consecutive sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis demonstrated that both matrix and the integral membrane proteins of peroxisomes could be successfully fractionated and then identified by mass spectrometry. This is documented by the detection of PMP22, which is the most hydrophobic and basic protein of the peroxisomal membrane with a pI > 10. The identification of 96 prominent spots corresponding to polypeptides with different physical and chemical properties, e.g., the most abundant integral membrane polypeptides of peroxisomes and specific ones of the mitochondrial and microsomal membrane, reflects the fractionation potential of free-flow (FF)-IEF, accentuating its value in proteomic research as an alternative perhaps superior to gel-based IEF.  相似文献   

3.
The requirement for prefractionation in proteomic analysis is linked to the challenge of performing such an analysis on complex biological samples and identifying low level components in the presence of numerous abundant housekeeping and structural proteins. The employment of a preliminary fractionation step results in a reduction of complexity in an individual fraction and permits more complete liquid chromatography/mass spectrometry (LC/MS) analysis. Free flow electrophoresis (FFE), a solution-based preparative isoelectric focusing technique, fractionates and enriches protein fractions according to their charge differences and is orthogonal in selectivity to the popular reversed phase high performance liquid chromatography (HPLC) fractionation step. In this paper, we explored the advantages of a combination of FFE and liquid chromatography/mass spectrometry to extend the dynamic range of a proteomic analysis of a complex cell lysate. In this study, the whole cell lysate of a chronic myelogeneous leukemia cell line, K562/CR3, was prefractionated by FFE into 96 fractions spanning pH 3-12. Of these, 35 fractions were digested with trypsin and then analyzed by LC/MS. Depending on the algorithm used for peptide assignment from MS/MS data, at least 319 proteins were identified through database searches. The results also suggested that pI could serve as an additional criterion besides peptide fragmentation pattern for protein identification, although in some cases, a pI shift might indicate post-translational modification. In summary, this study demonstrated that free flow electrophoresis provided a useful prefractionation step for proteomic analysis and when combined with LC/MS allowed the identification of significant number of low level proteins in complex samples.  相似文献   

4.
《Electrophoresis》2017,38(16):2034-2041
High‐throughput mass spectrometry‐based proteomic analysis requires peptide fractionation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low‐molecular‐weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24‐wells device encompassing the pH range 3–10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI‐TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on‐line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom‐up proteomic approach with or without iTRAQ labeling.  相似文献   

5.
Advancements in proteomic tools offer a comprehensive solution to studying the complexity of diseases at molecular level. This study focusses on the clinical proteomic profiling of pre- and post-hydroxyurea (HU)-treated β-thalassemia patients in parallel with healthy individuals to better understand the role of HU in the treatment of β-thalassemia. The strategy encompasses sequential high-resolution protein fractionation using MicroSol-isoelectric focusing (ZOOM- IEF) followed by one-dimensional SDS-PAGE before nano-RP-LC–MS/ MS analysis of tryptic peptides. Protein identification was performed through Mascot search using NCBInr and SwissProt databases. Several different proteins were observed in pool serum samples of each of the three study groups. Approximately, 1250 proteins exclusive to each group were identified, and after removing the redundant and low sequence coverage proteins, the number was reduced to 576 (201 in healthy, 187 in HU-untreated and 188 in HU-treated group). Uniquely identified proteins in the HU-treated group regulate the focal adhesion, ECM-receptor interaction, PI3K-Akt signaling, Rap1 signaling, cAMP signaling, platelet activation, and Ca2+ signaling pathways in the HU-treated group. The proteomic profile presented here will add to the current state of understanding of molecular mechanisms involved in hydroxyurea treatment of β-thalassemia.  相似文献   

6.
Two-dimensional electrophoresis is a current method for separating complex protein mixtures of a given sample in different states. In this study an improved carrier ampholyte isoelectric focusing method has been evaluated for its capacity for preliminary screening of expressional proteomics subjects. In comparison with current carrier ampholyte isoelectric focusing, this method showed enough resolution power to display major expressional changes in proteomic samples and demonstrated it can be used as a substitution for the immobiline based isoelectric focusing method.  相似文献   

7.
Development of miniaturized analytical tools continues to be of great interest to face the challenges in proteomic analysis of complex biological samples such as human body fluids. In the light of these challenges, special emphasis is put on the speed and simplicity of newly designed technological approaches as well as the need for cost efficiency and low sample consumption. In this study, we present an alternative multidimensional bottom-up approach for proteomic profiling for fast, efficient and sensitive protein analysis in complex biological matrices. The presented setup was based on sample pre-fractionation using microscale in solution isoelectric focusing (IEF) followed by tryptic digestion and subsequent capillary electrophoresis (CE) coupled off-line to matrix assisted laser desorption/ionization time of flight tandem mass spectrometry (MALDI TOF MS/MS). For high performance CE-separation, PolyE-323 modified capillaries were applied to minimize analyte–wall interactions. The potential of the analytical setup was demonstrated on human follicular fluid (hFF) representing a typical complex human body fluid with clinical implication. The obtained results show significant identification of 73 unique proteins (identified at 95% significance level), including mostly acute phase proteins but also protein identities that are well known to be extensively involved in follicular development.  相似文献   

8.
The availability of robust and highly efficient separation methods represents a major requirement for proteome analysis. This study investigated the characteristics of two different gel-free proteomic approaches to the fractionation of proteolytic peptides and intact proteins, respectively, in a first separation dimension. Separation and mass spectrometric detection by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) were performed at the peptide level in both methods. Bottom-up analysis (BU) was carried out employing well established peptide fractionation in the first separation dimension by strong cation-exchange chromatography (SCX), followed by ion-pair reversed-phase chromatography (IP-RPC) in the second dimension. In the semi-top-down approach (STD), which involved intact protein fractionation in the first dimension, the separation mode in both dimensions was IP-RPC utilizing monolithic columns. Application of the two approaches to the proteome analysis of proteins extracted from a tumor tissue revealed that the BU method identified more proteins (1245 in BU versus 920 in STD) while STD analysis offered higher sequence coverage (14.8% in BU versus 17.5% in STD on average). The identification of more basic and larger proteins was slightly favored in the BU approach, most probably due to higher losses of these proteins during intact protein handling and separation in the STD method. A significant degree of complementarity was revealed by an approximately 33% overlap between one BU and STD replicate, while 33% each of the protein identifications were unique to both methods. In the STD method, peptides obtained upon digestion of the proteins contained in fractions of the first separation dimension covered a broad elution window in the second-dimension separation, which demonstrates a high degree of “pseudo-orthogonality” of protein and peptide separation by IP-RPC in both separation dimensions.  相似文献   

9.
The application of two-dimensional electrophoresis for the identification of hydrophobic membrane proteins is principally hampered by precipitation of many of these proteins during first-dimension, isoelectric focusing. Therefore new strategies towards the identification and characterization of membrane proteins are being developed. In this work we present a direct and rapid approach from blue-native gels to mass spectrometry, which allows the analyses of complete complexes and prevents protein aggregation of hydrophobic regions during electrophoresis. We combine blue-native gel electrophoresis and liquid chromatography--nanospray-iontrap tandem mass spectrometry to analyze the composition of oxidative phosphorylation complexes I, III, IV and V from bovine-heart mitochondria as a model system containing a number of highly hydrophobic proteins. Bands from blue-native gels were subjected either to in-gel or to in-solution tryptic digestion. The obtained peptide mixtures were further analyzed by liquid chromatography--tandem mass spectrometry and the corresponding proteins were identified by database search. From a total of 86 proteins, 67 protein subunits could be identified including all highly hydrophobic components, except the ND4L and ND6 subunits of complex I. We demonstrate that liquid chromatography--tandem mass spectrometry combined to blue-native electrophoresis is a straightforward tool for proteomic analysis of multiprotein complexes, and especially for the identification of very hydrophobic membrane protein constituents that are not accessible by common isoelectric focusing/sodium dodecyl sulphate gel electrophoresis.  相似文献   

10.
A new protein fractionation technique based on off-gel isoelectric focusing (IEF) is presented, where the proteins are separated according to their isoelectric point (pI) in a multiwell device with the advantage to be directly recovered in solution for further analysis. The protein fractions obtained with this technique have then been characterized with polymer nanoelectrospray for mass spectrometry (MS) analyses or with Bioanalyzer for mass identification. This methodology shows the possibility of developing alternatives to the classical two-dimensional (2-D) gel electrophoresis. One species numerical simulation of the electric field distribution during off-gel separation is also presented in order to demonstrate the principle of the purification. Experiments with pI protein markers have been carried out in order to highlight the kinetics and the efficiency of the technique. Moreover, the resolution of the fractionation was shown to be 0.1 pH unit for the separation of beta-lactoglobulin A and B. In addition, the isoelectric fractionation of an Escherichia coli extract was performed in standard solubilization buffer to demonstrate the performances of the technique, notably for proteomics applications.  相似文献   

11.
Proteomic analysis has been widely used in elucidating the mechanism of diseases. As a classical proteomic approach, two-dimensional gel electrophoresis (2DGE) has been commonly applied in finding differentially expressed proteins through a first dimension of separation by the isoelectric point (pI) of proteins and a second dimension of separation according to the molecular weight (MW) of proteins. Compared to 2DGE, a recently developed commercial system from Beckman Coulter, the two-dimensional protein fractionation (PF2D), separates proteins according to the pI of proteins in the first dimension followed by a second dimension of separation according to the degree of protein hydrophobicity. As a liquid-based fractionation system, PF2D could facilitate the extraction and separation of broader protein categories and improve reproducibility and quantification as well as be less labor-intensive, which are usually identified as limitations of a gel-based 2DGE platform. This review evaluates the applications of the PF2D system and discusses the perspectives and advantages of PF2D in the investigation of cancer and genetic disorders and in protein mapping in human biological fluids and cell cultures.   相似文献   

12.
Six amino acids with pIs that ranged from 3.2 to 9.7 were used as ampholytes to establish a pH gradient in capillary isoelectric focusing. This amino acid-based capillary isoelectric focusing (cIEF) was coupled with ESI-MS/MS using an electrokinetically pumped sheath-flow interface for peptide analysis. Amino acid-based isoelectric focusing generates a two-order of magnitude lower background signal than commercial ampholytes in the important m/z range of 300–1800. Good focusing was achieved for insulin receptor, which produced ∼10 s peak width. For 0.1 mg mL−1 bovine serum albumin (BSA) digests, 24 ± 1 peptides (sequence coverage 47 ± 4%) were identified in triplicate analysis. As expected, the BSA peptides were separated according to their pI. The concentration detection limit for the BSA digests is 7 nM and the mass detection limit is 7 fmole. A solution of six bovine protein tryptic digests spanning 5 orders of magnitude in concentration was analyzed by amino acid based cIEF-ESI-MS/MS. Five proteins with a concentration range spanning 4 orders of magnitude were identified in triplicate runs. Using amino acid based cIEF-ESI-MS/MS, 112 protein groups and 303 unique peptides were identified in triplicate runs of a RAW 264.7 cell homogenate protein digest. In comparison with ampholyte based cIEF-ESI-MS/MS, amino acid based cIEF-ESI-MS/MS produces higher resolution of five acidic peptides, much cleaner mass spectra, and higher protein spectral counts.  相似文献   

13.
Zhu Y  Lubman DM 《Electrophoresis》2004,25(7-8):949-958
Preparative isoelectric focusing (PIEF) is used to achieve narrow-band fractionation of proteins from whole cell lysates of Escherichia coli (E. coli). Isoelectric membranes create well-defined pH ranges that fractionate proteins by isoelectric point (pI) upon application of an electric potential. A commercial IsoPrime device (Amersham-Pharmacia BioTech) is modified for the PIEF separation to lessen run volumes significantly. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) analysis of chamber contents indicates that excellent pH fractionation is achieved with little overlap between chambers. PIEF pH fractions are further separated using nonporous reversed-phase high-performance liquid chromatography (NPS-RP-HPLC) and HPLC eluent is analyzed on-line by electrospray ionization-time of flight-mass spectrometry (ESI-TOF-MS) for intact protein molecular weight (MW) analysis. The result is a pI versus MW map of bacterial protein content. IEF fractionation down to 0.1 pH units combined with intact protein MW values result in a highly reproducible map that can be used for comparative analysis of different E. coli strains.  相似文献   

14.
In most diseases, the clinical need for serum/plasma markers has never been so crucial, not only for diagnosis, but also for the selection of the most efficient therapies, as well as exclusion of ineffective or toxic treatment. Due to the high sample complexity, prefractionation is essential for exploring the deep proteome and finding specific markers.In this study, three different sample preparation methods (i.e., highly abundant protein precipitation, restricted access materials (RAM) combined with IMAC chromatography and peptide ligand affinity beads) were investigated in order to select the best fractionation step for further differential proteomic experiments focusing on the LMW proteome (MW inferior to 40,000 Da). Indeed, the aim was not to cover the entire plasma/serum proteome, but to enrich potentially interesting tissue leakage proteins. These three methods were evaluated on their reproducibility, on the SELDI-TOF-MS peptide/protein peaks generated after fractionation and on the information supplied.The studied methods appeared to give complementary information and presented good reproducibility (below 20%). Peptide ligand affinity beads were found to provide efficient depletion of HMW proteins and peak enrichment in protein/peptide profiles.  相似文献   

15.
Sample preparation and protein fractionation are important issues for proteomic studies. Protein extraction procedures strongly affect the performance of fractionation methods by provoking protein dispersion in several fractions. The most notable exception is the gel-based electrophoretic protein fractionation due to its resolution and effectiveness of sodium dodecyl sulfate as a solubilizing agent, while its main limitation lies in the poor recovery of the gel-trapped proteins. We created a fractionator device to separate complex mixture of proteins and peptides that is based on the continuous gel electrophoresis/electroelution sorting of these molecules. In an unsupervised process, complex mixtures of proteins or peptides are fractionated into the gel while separated fractions are simultaneously and sequentially electroeluted to the solution containing wells. The performance of the device was studied for protein fractionation in terms of reproducibility, protein recovery, and loading capacity. In a setup free of sodium dodecyl sulfate, complex peptide mixtures can also be fractionated. More than 11,700 proteins were identified in the whole-cell lysate of the CaSki cell line by using the fractionator combined with the filter-aided sample preparation method and mass spectrometry analysis. Fractionator-based proteome characterization increased 1.7-fold the number of identified proteins compared to the unfractionated sample analysis.  相似文献   

16.
In this study, a temperature-induced phase fractionation known as cloud-point extraction (CPE) with the non-ionic surfactant Triton X-114 was used to simultaneously extract, concentrate, and fractionate hydrophobic and hydrophilic proteins from mouse brain tissue. Two bottom-up proteomic techniques were used to comprehensively identify the extracted proteins. The first “shotgun”-based approach included tryptic digestion of the proteins followed by reversed-phase nanoliquid chromatography (RP-nanoLC) in combination with electrospray ionization (ESI) tandem mass spectrometry (MS/MS). In the second approach, the extracted intact proteins were first separated by one-dimensional (1D) gel electrophoresis and then in-gel digested with trypsin and analyzed with nanoLC-MS/MS. In total, 1,825 proteins were unambiguously identified and the percentage of membrane proteins was 26% which is at the reported genome expression levels of 20–30%. The protein overlap between the two approaches was high. The majority (77%) of the identifications in the first approach was also found by the second method. The protein overlap between the CPE-extracted hydrophilic and hydrophobic fractions was rather small (16–23%) for both methods, which indicates a good phase separation. A quantitative evaluation of the CPE with iTRAQ labeling and nanoLC-ESI-MS/MS analysis gave iTRAQ ratios at the expected levels and an overall variation of the entire method at 17–31%. The results indicate very reproducible sample preparation and analysis methods that readily can be applied on large-scale sample sets.  相似文献   

17.
The master two-dimensional gel database of human keratinocytes currently lists 2980 cellular proteins (2098 isoelectric focusing, IEF; and 882 nonequilibrium pH gradient electrophoresis, NEPHGE) many of which correspond to posttranslational modifications. About 20% of all recorded proteins have been identified (protein name, organelle components, etc.) and they are listed in alphabetical order together with their M(r), pI, cellular localization and credit to the investigator(s) that aided in the identification. Also, we have listed 145 microsequenced proteins that are recorded in this database. As an aid in localizing the polypeptides we have included blow-ups of the master images (IEF, NEPHGE) displaying all the protein numbers. In the long run, the master keratinocyte database is expected to link protein and DNA sequencing and mapping information (Human Genome Program) and to provide an integrated picture of the expression levels and properties of the thousands of proteins that orchestrate various keratinocyte functions both in health and disease.  相似文献   

18.
To improve the efficiency of proteome analysis, a strategy with the combination of protein pre-fractionation by preparative microscale solution isoelectric focusing, peptide separation by μRPLC with serially coupled long microcolumn and protein identification by ESI-MS/MS was proposed. By preparative microscale solution isoelectric focusing technique, proteins extracted from whole cell lysates of Escherichia coli were fractionated into five chambers divided by isoelectric membranes, respectively with pH range from 3.0 to 4.6, 4.6 to 5.4, 5.4 to 6.2, 6.2 to 7.0 and 7.0 to 10.0. Compared to the traditional on-gel IFF, the protein recovery could be obviously improved to over 95%. Subsequently, the enriched and fractionated proteins in each chamber were digested, and further separated by a 30-cm long serially coupled RP microcolumn. Through the detection by ESI-MS/MS, about 200 proteins were identified in each fraction, and in total 835 proteins were identified even with one-dimensional μRPLC-MS/MS system. All these results demonstrate that by such a combination strategy, highly efficient proteome analysis could be achieved, not only due to the in-solution protein enrichment and pre-fractionation with improved protein recovery but also owing to the increased separation capacity of serially coupled long μRPLC columns.  相似文献   

19.
Park JW  Lee SG  Song JY  Joo JS  Chung MJ  Kim SC  Youn HS  Kang HL  Baik SC  Lee WK  Cho MJ  Rhee KH 《Electrophoresis》2008,29(13):2891-2903
Among 1590 ORFs in the Helicobacter pylori genome, >250 have been identified as authentic genes by proteomic analysis. Low-abundance proteins need to be enriched to a minimal amount for MALDI-TOF analysis and salt precipitation has generally been used for protein enrichment. Here, a whole-cell extract of H. pylori strain 26695 was subjected to protein fractionation with stepwise concentrations of ammonium sulfate and the proteins were displayed by 2-DE. The protein spots were quantified using PDQUEST software and identified by peptide fingerprinting. The 2-DE profiles and intensities of individual protein spots differed among the protein fractions. Out of the 98 identified proteins, 61 were found in the stepwise ammonium sulfate fractions but not in the whole-cell extract. Out of these, 37 proteins, including KdsA, were found exclusively in a single fraction. In contrast, GroEL, UreA, UreB, TrxA, NapA, and FldA were ubiquitously present in all fractions. Iron-containing proteins such as NapA, SodB, CeuE, and Pfr were found predominantly in the 100% saturated ammonium sulfate precipitate. Additionally, 29 proteins were newly identified in this study. These data will facilitate the preparation of significant H. pylori proteins, as well as provide information about low-abundance proteins.  相似文献   

20.
The enrichment and processing of proteomic samples prior to multi-dimensional chromatography remain a challenge in ‘gel-free’ proteomics. We previously reported the development of a microfluidic device called the “proteomic reactor” that relied on enriching proteins by using strong cation exchange (SCX) followed by trypsin digestion in an interstitial volume as little as 50 nL. Here, we report a novel proteomic reactor that is based on polymeric strong anion exchange (SAX) material to analyse proteomic samples. We also compare the performance of the SAX proteomic reactor to our previously reported SCX proteomic reactor for analysing complex yeast proteomes. Our results indicate that the SAX protein reactor preferentially identifies more acidic peptides and proteins compared to the SCX reactor. We show that the SAX and SCX reactors are complementary and that their combination increases the number of unique peptides and proteins identified by 50%. Furthermore, we show that the number of protein identified can be increased further by up to 40% using different proteolytic enzymes on the proteomic reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号