首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Hybrid organic–inorganic solar cell devices were fabricated utilizing macroporous n-type Ga P and poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate)(PEDOT:PSS).The high-aspect ratio structures of the macroporous Ga P resulted in higher photocurrent and external quantum yield as a function of wavelength.Photocurrent–voltage measurements as a function of light intensity revealed information on the dependence of short-circuit current(Jsc) and open-circuit voltage(Voc) on light intensity.Under 1.0 Sun illumination,hybrid macroporous Ga P/PEDOT:PSS devices showed Jscof2.34 m A cmà2,Vocof 0.95 V,fill factor of 0.54,and overall efficiency of 1.21%.The extent of the influence of dopant density of Ga P on hybrid device performance was probed with current density–voltage measurements.The addition of a gold nanoparticle coating on macroporous Ga P prior to PEDOT:PSS coating showed increased device performance,with overall efficiency of 1.81%.Gold-modified planar Ga P/PEDOT:PSS showed decreased Jscand Vocvalues and lower external quantum yield over all wavelengths.  相似文献   

2.
Cui  Huiqin  Song  Wei  Fanady  Billy  Peng  Ruixiang  Zhang  Jianfeng  Huang  Jiaming  Ge  Ziyi 《中国科学:化学(英文版)》2019,62(4):500-505
Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonic acid)(PEDOT:PSS) has been explored to fabricate flexible and stretchable conductors. Generally, PEDOT:PSS transparent anodes are prepared by spin-coating method. In this article, we adopt a method by dropping PEDOT:PSS aqueous solution on the PET plastic substrate to fabricate flexible electrodes. Compared with spin coating, drop-coating is simple and cost-effective with large-area fabrications. Through this method, we fabricated highly transparent conductive electrodes and systematically studied their electrical, optical, morphological and mechanical properties. With dimethyl sulfoxide/methanesulfonic acid(DMSO/MSA) treated PEDOT:PSS electrode,bendable devices based on non-fullerene system displayed an open-circuit voltage of 0.925 V, a fill factor of 70.74%, and a high power conversion efficiency(PCE) of 10.23% under 100 mW cm~(-2) illumination, which retained over 80% of the initial PCE value after 1000 bending cycles. Based on the findings, drop-coated PEDOT:PSS electrodes exhibited high suitability for the development of large-area and high-efficiency printed solar cell modules in the future.  相似文献   

3.
研究了氧化石墨烯(GO)掺杂聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸) (PEDOT:PSS)作为空穴注入层对有机发光二极管发光性能的影响. 在PEDOT:PSS水溶液中掺入GO, 经过湿法旋涂和退火成膜后, 不仅提高了空穴注入层的空穴注入能力和导电率, 透光率也得到了相应的提高, 从而使得有机发光二极管(OLED)器件的发光性能得到了提升. 通过优化GO掺杂量发现, 当GO掺杂量为0.8%(质量分数)时, 空穴注入层的透光率达到最大值(96.8%), 此时获得的OLED器件性能最佳, 其最大发光亮度和最大发光效率分别达到17939 cd·m-2和3.74 cd·A-1. 与PEDOT:PSS 作为空穴注入层的器件相比, 掺杂GO后器件的最大发光亮度和最大发光效率分别提高了46.6%和67.6%.  相似文献   

4.
黄鹏  元利刚  李耀文  周祎  宋波 《物理化学学报》2018,34(11):1264-1271
p-i-n型的钙钛矿太阳能电池中,聚3, 4-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)作为最常用的空穴传输层(HTL)材料之一,由于其存在着吸湿性强以及能级与钙钛矿层不匹配等缺点,限制了它的应用。基于此,本文拟采用将左旋多巴(DOPA)和N, N-二甲基亚砜(DMSO)共同掺杂于PEDOT:PSS作为HTL的简单方法制备高性能p-i-n型钙钛矿太阳能电池。研究结果表明,DOPA和DMSO共掺杂PEDOT:PSS可以有效的调节HTL的能级并提高其导电性,器件的能量转化效率由13.35%显著提高到了17.54%。进一步研究发现,相比于未掺杂或单一掺杂的PEDOT:PSS,在DOPA和DMSO共掺杂的PEDOT:PSS上更有利于生长大尺寸、高结晶度的钙钛矿晶体;同时稳态/瞬态荧光和交流阻抗测试表明器件的内部载流子分离和传输更加有效。  相似文献   

5.
通过掺杂吸收光谱在可见光波段的量子点可提高聚合物对可见光的吸收,因此掺杂CdSe/ZnS核-壳结构量子点(CQDs)能提高聚(3-己基噻吩):[6,6]-苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结太阳电池的能量转换效率.本文研究了CdSe/ZnS量子点在P3HT:PCBM中的不同掺杂比例及其表面配体对太阳电池光伏性能的影响,优化器件ITO(氧化铟锡)/PEDOT:PSS(聚(3,4-乙撑二氧噻吩:聚苯乙烯磺酸)/P3HT:PCBM:(CdSe/ZnS)/Al的能量转换效率达到了3.99%,与相同条件下没有掺杂量子点的参考器件ITO/PEDOT:PSS/P3HT:PCBM/Al相比,其能量转换效率提高了45.1%.  相似文献   

6.
The stability of a common interface used in organic photovoltaic cells, between the transparent electrode of Indium Tin Oxide (ITO) and a buffer layer of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is strongly influenced by the presence of humidity during processing, leading to significant migration of indium and tin species into the PEDOT:PSS layer. The interface was studied using neutral impact collision ion scattering spectroscopy (NICISS) and X-ray photoelectron spectroscopy (XPS), to determine migration of indium and tin into the polymer layer. It was found that the migration starts almost instantly after spin coating of the aqueous PEDOT:PSS solution and it reaches a saturation level within twenty four hours. The indium and tin were found always uniformly distributed over the sampling depth of almost one-third of the thickness of the PEDOT:PSS layer. Exposure to humidity following annealing resulted in the highest concentration (1.8 × 10(-3) mol cm(-3)) of indium or tin species, corresponding to about one indium or tin moiety per 4.7 monomer units in the PEDOT:PSS. The maximum bulk concentration of indium is about two orders of magnitude higher after exposure to humid conditions compared to vacuum dried conditions. XPS measurements confirm the presence of both indium and tin in the PEDOT:PSS and the formation of salts with the metal ions as cations.  相似文献   

7.
Despite the exceptional efficiency of perovskite solar cells (PSCs), further improvements can be made to bring their power conversion efficiencies (PCE) closer to the Shockley-Queisser limit, while the development of cost-effective strategies to produce high-performance devices are needed for them to reach their potential as a widespread energy source. In this context, there is a need to improve existing charge transport layers (CTLs) or introduce new CTLs. In this contribution, we introduced a new polyelectrolyte (lithium poly(styrene sulfonate (PSS))) (Li:PSS) polyelectrolyte as an HTL in inverted PSCs, where Li+ can act as a counter ion for the PSS backbone. The negative charge on the PSS backbone can stabilize the presence of p-type carriers and p-doping at the anode. Simple Li:PSS performed poorly due to poor surface coverage and voids existence in perovskite film as well as low conductivity. PEDOT:PSS was added to increase the conductivity to the simple Li:PSS solution before its use which also resulted in lower performance. Furthermore, a bilayer of PEDOT:PSS and Li:PSS was employed, which outperformed simple PEDOT:PSS due to high quality of perovskite film with large grain size also the large electron injection barrier (ϕe) impeded back diffusion of electrons towards anode. As a consequence, devices employing PEDOT:PSS / Li:PSS bilayers gave the highest PCE of 18.64%.  相似文献   

8.
The open-circuit voltage (V(oc)) dependence on the illumination intensity (phi0) under steady-state conditions in both bare and coated (blocked) nanostructured TiO2 dye-sensitized solar cells (DSSCs) is analyzed. This analysis is based on a recently reported model [Bisquert, J.; Zaban, A.; Salvador, P. J. Phys. Chem. B 2002, 106, 8774] which describes the rate of interfacial electron transfer from the conduction band of TiO2 to acceptor electrolyte levels (recombination). The model involves two possible mechanisms: (1) direct, isoenergetic electron injection from the conduction band and (2) a two-step process involving inelastic electron trapping by band-gap surface states and subsequent isoenergetic transfer of trapped electrons to electrolyte levels. By considering the variation of V(oc) over a wide range of illumination intensities (10(10) < phi0 < 10(16) cm(-2) s(-1)), three major regions with different values of dV(oc)/d phi0 can be distinguished and interpreted. At the lower illumination intensities, recombination mainly involves localized band-gap, deep traps at about 0.6 eV below the conduction band edge; at intermediate photon fluxes, recombination is apparently controlled by a tail of shallow traps, while, for high enough phi0 values, conduction band states control the recombination process. The high phi0 region is characterized by a slope of dV(oc)/d log phi0 congruent with 60 mV, which indicates a recombination of first order in the free electron concentration. The study, which was extended to different solar cells, shows that the energy of the deep traps seems to be an intrinsic property of the nanostructured TiO2 material, while their concentration and also the density ([symbol: see text]t approximately 10(18)-10(19) cm(-3)) and distribution of shallow traps, which strongly affects the shape of the V(oc) vs phi0 curves, change from sample to sample and are quite sensitive to the electrode preparation. The influence of the back-reaction of electrons from the fluorine-doped tin oxide (FTO) conducting glass substrate with electrolyte tri-iodide ions on the V(oc) vs phi0 dependence characteristic of the DSSC is analyzed. It is concluded that this back-reaction route can be neglected, even at low light intensities, when its rate (exchange current density, j0), which can vary over 4 orders of magnitude depending on the type of FTO used, is low enough (j0 < or = 10(-8)A cm(-2)). The comparison of V(oc) vs phi0 measurements corresponding to different DSSCs with and without blocking of the FTO-electrolyte contact supports this conclusion.  相似文献   

9.
By using bifunctional surface modifiers (SH-R-COOH), CdSe quantum dots (QDs) have been assembled onto mesoscopic TiO(2) films. Upon visible light excitation, CdSe QDs inject electrons into TiO(2) nanocrystallites. Femtosecond transient absorption as well as emission quenching experiments confirm the injection from the excited state of CdSe QDs into TiO(2) nanoparticles. Electron transfer from the thermally relaxed s-state occurs over a wide range of rate constant values between 7.3 x 10(9) and 1.95 x 10(11) s(-1). The injected charge carriers in a CdSe-modified TiO(2) film can be collected at a conducting electrode to generate a photocurrent. The TiO(2)-CdSe composite, when employed as a photoanode in a photoelectrochemical cell, exhibits a photon-to-charge carrier generation efficiency of 12%. Significant loss of electrons occurs due to scattering as well as charge recombination at TiO(2)/CdSe interfaces and internal TiO(2) grain boundaries.  相似文献   

10.
Lee  Joo-Won  kim  jai-Kyeong  Yoon  Young-Soo 《中国化学》2010,28(1):115-118
High efficiency organic light‐emitting‐devices (OLED) have been fabricated by incorporation of a polymeric layer as a controller of the unbalanced charge. In device configuration of ITO/PEDOT:PSS/PVK/Alq3/LiF:Al, poly(N‐vinylcarbazole) (PVK) was selected as a block‐ing layer (BL) because it has a hole transporting property and a higher band gap, especially a lower LUMO level than the emitting layer (Alq3) and a higher HOMO level than the hole injection layer (PEDOT: PSS). As a result, the optimal structure with this bl layer showed a peak efficiency of 6.89 cd/A and 2.30 lm/W compared to the device without the PVK layer of 1.08 cd/A, 0.27 lm/W. This result shows that the PVK layer could effec‐tively block the electrons from metal cathode and confine them in the emitting layer and accomplish the charge balance, which leads to enhanced hole‐electron balance for achieving high recombination efficiency.  相似文献   

11.
Carbon nanotubes (CNTs), either single wall carbon nanotubes (SWNTs) or multiwall carbon nanotubes (MWNTs), can improve the thermoelectric properties of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT?:?PSS), but it requires addition of 30-40 wt% CNTs. We report that the figure of merit (ZT) value of PEDOT?:?PSS thin film for thermoelectric property is increased about 10 times by incorporating 2 wt% of graphene. PEDOT?:?PSS thin films containing 1, 2, 3 wt% graphene are prepared by solution spin coating method. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy analyses identified the strong π-π interactions which facilitated the dispersion between graphene and PEDOT?:?PSS. The uniformly distributed graphene increased the interfacial area by 2-10 times as compared with CNT based on the same weight. The power factor and ZT value of PEDOT?:?PSS thin film containing 2 wt% graphene was 11.09 μW mK(-2) and 2.1 × 10(-2), respectively. This enhancement arises from the facilitated carrier transfer between PEDOT?:?PSS and graphene as well as the high electron mobility of graphene (200,000 cm(2) V(-1) s(-1)). Furthermore the porous structure of the thin film decreases the thermal conductivity resulting in a high ZT value, which is higher by 20% than that for a PEDOT?:?PSS thin film containing 35 wt% SWNTs.  相似文献   

12.
刘智勇  徐文涛  王宁  杨小牛 《应用化学》2012,29(12):1423-1427
采用喷涂工艺制备了结构为ITO/ZnO/P3HT∶PCBM/V2O5/Ag(P3HT:聚噻吩;PCBM:6,6-苯基-C61-丁酸甲酯)的大面积倒置光伏器件,有效面积为1.0×1.1 cm2。 光谱测试结果表明,退火处理后,P3HT∶PCBM薄膜吸收显著增强,并且产生一定程度的红移。 采用ZnO和V2O5代替LiF和PEDOT∶PSS(聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸盐)作为器件修饰层,避免了PEDOT∶PSS对ITO的腐蚀和LiF潮解,采用Ag代替Al作为金属背电极避免了Al被氧化。 经过后退火处理器件的效率从1.1%提升至1.65%。 器件的稳定性相对于传统结构有了大幅提升,8周后器件效率只衰减10%。  相似文献   

13.
A simple and powerful approach for assessing the recombination losses in dye sensitised solar cells (DSSCs) across the current voltage curve (j-V) as a function of TiO(2) electron concentration (n) is demonstrated. The total flux of electrons recombining with iodine species in the electrolyte and oxidised dye molecules can be thought of as a recombination current density, defined as j(rec) = j(inj)-j where j(inj) is the current of electrons injected from optically excited dye states and j is the current density collected at cell voltage (V). The electron concentration at any given operating conditions is determined by charge extraction. This allows comparison of factors influencing electron recombination rates at matched n. We show that j(rec) is typically 2-3 times higher under 1 sun equivalent illumination (j(inj) > 0) relative to dark (j(inj) = 0) conditions. This difference was increased by increasing light intensity, electrolyte iodine concentration and electrolyte solvent viscosity. The difference was reduced by increasing the electrolyte iodide concentration and increasing the temperature. These results allowed us to verify a numerical model of complete operational cells (Barnes et al., Phys. Chem. Chem. Phys., DOI: 10.1039/c0cp01554g) and to relate the differences in j(rec) to physical processes in the devices. The difference between j(rec) in the light and dark can be explained by two factors: (1) an increase in the concentration of electron acceptor species (I(3)(-) and/or I(2)) when current is flowing under illumination relative to dark conditions where the current is flowing in the opposite direction, and (2) a non-trivial contribution from electron recombination to oxidised dye molecules under light conditions. More generally, the technique helps to assign the observed relationship between the components, processing and performance of DSSCs to more fundamental physical processes.  相似文献   

14.
Graphene oxide (GO) can be viewed as a two-dimensional, random diblock copolymer with distributed nanosize graphitic patches and highly oxidized domains, thus capable of guiding the assembly of other materials through both π-π stacking and hydrogen bonding. Upon mixing GO and conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in water, a dispersion with dramatically increased viscosity is obtained, which turns into sticky thin films upon casting. Surprisingly, the insulating GO makes PEDOT much more conductive by altering its chain conformation and morphology. The GO/PEDOT gel can function as a metal-free solder for creating mechanical and electrical connections in organic optoelectronic devices. As a proof-of-concept, polymer tandem solar cells have been fabricated by a direct adhesive lamination process enabled by the sticky GO/PEDOT film. The sticky interconnect can greatly simplify the fabrication of organic tandem architectures, which has been quite challenging via solution processing. Thus, it could facilitate the construction of high-efficiency tandem solar cells with different combinations of solution-processable materials.  相似文献   

15.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water‐solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3‐glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross‐link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 814–820  相似文献   

16.
Stretchable conductive hydrogels have received significant attention due to their possibility of being utilized in wearable electronics and healthcare devices. In this work, a semi-interpenetrating polymer network (SIPN) strategy was employed to fabricate a set of flexible, stretchable and conductive composite hydrogels composed of polyvinyl alcohol (PVA) in the presence of glutaraldehyde as the crosslinker, HCl as the catalyst and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) as the conductive medium. The results from FTIR, Raman, SEM and TGA indicate that a chemical crosslinking network and interactions of PVA and PEDOT:PSS exist in the SIPN hydrogels. The swelling ratio of hydrogels decreased with increasing content of PEDOT:PSS. Due to the chemical crosslinking network and interactions of PVA and PEDOT:PSS, PVA networks semi-interpenetrated with PEDOT:PSS exhibited excellent tensile and compression properties. The tensile strength and elongation at breakage of the composite hydrogels with 0.14 wt% PEDOT:PSS were 70 KPa and 239%, respectively. The compression stress of the composite hydrogels with 0.14 wt% PEDOT:PSS at a strain of 50% was about 216 KPa. The electrical conductivity of the hydrogels increased with increasing PEDOT:PSS content. The flexible, stretchable and conductive properties endow the composite hydrogel sensor with a superior gauge factor of up to 4.4 (strain: 100%). Coupling the strain sensing capability to the flexibility, good mechanical properties and high electrical conductivity, we consider that the designed PVA/PEDOT:PSS composite hydrogels have promising applications in wearable devices, such as flexible electronic skin and sensitive strain sensors.  相似文献   

17.
Ultraviolet light-induced electron-hole pair excitations in anatase TiO(2) powders were studied by a combination of electron paramagnetic resonance and infrared spectroscopy measurements. During continuous UV irradiation in the mW.cm(-2) range, photogenerated electrons are either trapped at localized sites, giving paramagnetic Ti(3+) centers, or remain in the conduction band as EPR silent species which may be observed by their IR absorption. Using low temperatures (90 K) to reduce the rate of the electron-hole recombination processes, trapped electrons and conduction band electrons exhibit lifetimes of hours. The EPR-detected holes produced by photoexcitation are O(-) species, produced from lattice O(2-) ions. It is found that under high vacuum conditions, the major fraction of photoexcited electrons remains in the conduction band. At 298 K, all stable hole and electron states are lost from TiO(2). Defect sites produced by oxygen removal during annealing of anatase TiO(2) are found to produce a Ti(3+) EPR spectrum identical to that of trapped electrons, which originate from photoexcitation of oxidized TiO(2). Efficient electron scavenging by adsorbed O(2) at 140 K is found to produce two long-lived O(2)(-) surface species associated with different cation surface sites. Reduced TiO(2), produced by annealing in vacuum, has been shown to be less efficient in hole trapping than oxidized TiO(2).  相似文献   

18.
Composites of unmodified or oxidized carbon nano‐onions (CNOs/ox‐CNOs) with poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are prepared with different compositions. By varying the ratio of PEDOT:PSS relative to CNOs, CNO/PEDOT:PSS composites with various PEDOT:PSS loadings are obtained and the corresponding film properties are studied as a function of the polymer. X‐ray photoelectron spectroscopy characterization is performed for pristine and ox‐CNO samples. The composites are characterized by scanning and transmission electron microscopy and differential scanning calorimetry studies. The electrochemical properties of the nanocomposites are determined and compared. Doping the composites with carbon nanostructures significantly increases their mechanical and electrochemical stabilities. A comparison of the results shows that CNOs dispersed in the polymer matrices increase the capacitance of the CNO/PEDOT:PSS and ox‐CNO/PEDOT:PSS composites.  相似文献   

19.
3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L~(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm~(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm~(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq~(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.  相似文献   

20.
A novel strategy via paper as an effective substrate has been introduced as a thermoelectric material in this work. Free‐standing poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/paper composite films are conveniently prepared by a one‐step method of directly writing PEDOT:PSS solution on paper, making the process simple, rapid, and facile. The free‐standing composite films display excellent flexibility, light weight, soaking stability in water, and great potential in large‐scale production. Improved thermoelectric properties are obtained in PEDOT:PSS/paper composite films, owing to the simultaneously enhanced Seebeck coefficient (30.6 μV K?1) and electrical conductivity, and a low thermal conductivity (0.16 W m?1 K?1) compared with pristine PEDOT:PSS films. The results indicate that paper as an effective substrate is suitable for the preparation of high‐performance and flexible thermoelectric materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 737–742  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号