首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The determination of pesticide residue on agricultural products is increasingly important.Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia.In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering.Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates.Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone.Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface.The limit of detection of acetamiprid was determined to be 0.05 mg/L.In addition, the molecular structure of acetamiprid was simulated and the corresponding vibration modes of the characteristic bands of acetamiprid were calculated by density function theory.To demonstrate its practical application, the AgNRs array substrates were applied successfully to the rapid identification of acetamiprid residue on a cucumber's surface.These results confirmed possibility of utilizing the AgNRs SERS substrates as a new method for highly sensitive pesticide residue detection.  相似文献   

2.
The development and application of electrospun glassy carbon nanofibers for ultra-thin layer chromatography (UTLC) are described. The carbon nanofiber stationary phase is created through the electrospinning and pyrolysis of SU-8 2100 photoresist. This results in glassy carbon nanofibers with diameters of ∼200–350 nm that form a mat structure with a thickness of ∼15 μm. The chromatographic properties of UTLC devices produced from pyrolyzed SU-8 heated to temperatures of 600, 800, and 1000 °C are described. Raman spectroscopy and scanning electron microscopy (SEM) are used to characterize the physical and molecular structure of the nanofibers at each temperature. A set of six laser dyes was examined to demonstrate the applicability of the devices. Analyses of the retention properties of the individual dyes as well as the separation of mixtures of three dyes were performed. A mixture of three FITC-labeled essential amino acids: lysine, threonine and phenylalanine, was examined and fully resolved on the carbon UTLC devices as well. The electrospun glassy carbon UTLC plates show tunable retention, have plate number, N, values above 10,000, and show physical and chemical robustness for a range of mobile phases.  相似文献   

3.
As part of increasing research in the field of separation science, there have been many efforts to undertake planar chromatography with more efficient separation and better resolution in the shortest period of time, together with a specificity and a capability to identify more precisely an unknown compound present in a mixture. Ultra-thin layer chromatography (UTLC) is a modern technique which gives separation within 10–30 mm and development in just 1–6 min, with the consumption of less solvent. The stationary phase of UTLC is made up of a silica gel monolithic layer of 10 μm thickness having 3- to 4-nm mesopores and 1- to 2-μm macropores. Glancing angle deposition (GLAD)-UTLC is a modification of UTLC which gives separation within 15 mm distance and in less than 2 min. Anisotropic media of GLAD UTLC gives a unique migration direction effect. UTLC atmospheric pressure–matrix-assisted laser desorption ionizer–mass spectrometery (UTLC-AP-MALDI-MS) is a choice of technique for the identification of an unknown compound in a mixture or an impure form. ULTC-AP-MALDI-MS allows the fast changing of plates, produces more intact protonated molecules, less fragmentation and less entry of chromatographic material, and yielding less complicated spectra than the vacuum condition. Thus, UTLC is a useful technique for very rapidly giving the separation and identification of new components present in mixtures. This review provides a brief overview of UTLC, the stationary phases used for UTLC, and the detection options and applications of UTLC.  相似文献   

4.
X Wu  S Gao  JS Wang  H Wang  YW Huang  Y Zhao 《The Analyst》2012,137(18):4226-4234
High-quality surface-enhanced Raman scattering (SERS) spectra of aflatoxin (AF) B(1), B(2), G(1) and G(2) have been acquired using silver nanorod (AgNR) array substrates fabricated by oblique angle deposition method. Significant vibrational peaks are identified on the argon plasma-cleaned substrates, and those peaks agree very well with the Raman spectra calculated by density function theory (DFT). The concentration-dependent SERS detection is also explored. The relationship between the concentration (C) of different AFs and the SERS intensity (I) of the Raman peak at Δν = 1592 cm(-1) is found to follow the general relationship I = AC(α), with α ranging from 0.32 to 0.46 for the four AFs. The limits of detection (LODs) reach 5 × 10(-5) mol L(-1) for AFB(1), 1 × 10(-4) mol L(-1) for AFB(2), and 5 × 10(-6) mol L(-1) for both AFG(1) and AFG(2) in bulk solution, or 6.17 × 10(-16) mol/1.93 × 10(-4) ng of AFB(1), 1.23 × 10(-15) mol/3.88 × 10(-4) ng for AFB(2), 6.17 × 10(-17) mol/2.03 × 10(-5) ng for AFG(1), and 6.17 × 10(-17) mol/2.04 × 10(-5) ng for AFG(2) per laser spot. Principal component analysis (PCA) is used to successfully differentiate these four different kinds of AFs at different concentrations up to their detection limits. The LODs obtained from PCA agree with the LODs obtained by using peak fitting method. With such a low detection limit and outstanding differentiation ability, we prove the possibility of utilizing the SERS detection system as a platform for highly sensitive mycotoxin detection.  相似文献   

5.
以硅纳米孔柱阵列(Si-NPA)为基底, 采用浸渍沉积技术制备了具有较高表面增强拉曼散射(SERS)活性的Ag/Si-NPA衬底, 并采用扫描电子显微镜和透射电子显微镜对其表面形貌和结构进行了表征. 在此基础上, 选择罗丹明6G(R6G)和结晶紫(CV)2种生物染料分子并采用不同的混合吸附程序对其共吸附状态下的SERS光谱进行了探测. 结果表明, 当2种分子的溶液浓度均为10-7 mol/L时, 无论采用何种浸渍吸附程序, 其SERS谱中CV的特征拉曼峰都被R6G完全掩盖. 对溶液采用错级配置(R6G和CV的浓度分别为10-9和10-7 mol/L)后, 所测SERS谱上获得了分别对应于R6G和CV的分离良好、相对强度匹配、分辨率高的2个SERS特征峰组, 从而有利于简化现实混合探测过程中对SERS特征峰的指认和判断.  相似文献   

6.
Using the hydrolysis of tetraethylorthosilicate, a uniform and conformal layer of porous SiO(2) with controlled thickness has been coated onto the oblique angle deposited Ag nanorod (AgNR) array to form an aligned AgNR-SiO(2) core-shell array nanostructure. The morphology, optical property, SERS response, and surface wettability of the AgNRs with different SiO(2) shell thicknesses have been obtained by multiple characterization techniques. The morphological characterization shows that each AgNR on the array is coated with a uniform and porous silica shell independently and the growth of shell thickness follows a linear function versus the coating time. Thickening of the shell induces a monotonic decrease of the apparent contact angle, red-shift of the transverse mode of the localized surface plasmon resonance peak, and makes the SiO(2) shell more compact. The SERS response of 4-Mercaptophenol on these substrates exhibits an exponential decay behavior with the increasing coating time, which is ascribed to the decreasing Ag surface coverage of core-shell nanorods. Under the assumption that the Ag surface coverage is proportional to the SERS intensity, one can estimate the evolution of SiO(2) coverage on AgNRs. Such coverage evolution can be used to qualitatively explain the LSPR wavelength change and quantitatively interpret the contact angle change based on a double Cassie's law.  相似文献   

7.
The development of ultrathin-layer silica gel plates with a monolithic structure opens up a new dimension in thin-layer chromatography (TLC). The very small layer thickness of approximately 10 microm and the absence of any kind of binder in combination with the framework of this stationary phase lead to new and improved properties of these ultrathin-layer chromatographic (UTLC) silica-gel plates compared with conventional TLC and high-performance TLC (HPTLC) precoated layers. First of all, the advantages of the UTLC plates are the very short migration distances and, in combination with this, the short development times as well as the very low consumption of solvents as the mobile phase in connection with high sensitivity. The separations of amino acids, pesticides, pharmaceutically active ingredients, phenols, and plasticizers effectively demonstrate the possibilities of the new ultrathin-layer silica-gel plates. Furthermore, a comparison of UTLC, HPTLC, and TLC concerning retention behavior, efficiency, detection limits, migration times, and solvent consumption is performed effectively by the separation of caffeine and paracetamol.  相似文献   

8.
The application of carbon nanotube or nanorod/polyacrylonitrile (PAN) composite electrospun nanofibrous stationary phase for ultrathin layer chromatography (UTLC) is described herein. Multi-walled carbon nanotubes (MWCNTs) and edge-plane carbon (EPC) nanorods were prepared and electrospun with the PAN polymer solution to form composite nanofibers for use as a UTLC stationary phase. The analysis of laser dyes demonstrated the feasibility of utilizing carbon nanoparticle-filled electrospun nanofibers as a UTLC stationary phase. The contribution of MWCNT or EPC in changing selectivity of the stationary phase was studied by comparing the chromatographic behavior among MWCNT–PAN plates, EPC–PAN plates and pure PAN plates. Carbon nanoparticles in the stationary phase were able to establish strong π–π interactions with aromatic analytes. The separation of five polycyclic aromatic hydrocarbons (PAHs) demonstrated enhanced chromatographic performance of MWCNT-filled stationary phase by displaying substantially improved resolution and separation efficiency. Band broadening of the spots for MWCNT or EPC-filled UTLC stationary phases was also investigated and compared with that for pure PAN stationary phases. A 50% improvement in band dispersion was noted using the MWCNT based composite nanofibrous UTLC plates.  相似文献   

9.
As an effective and universal acaricide, amitraz is widely used on beehives against varroasis caused by the mite Varroa jacobsoni. Its residues in honey pose a great danger to human health. In this study, a sensitive, rapid, and environmentally friendly surface-enhanced Raman spectroscopy method (SERS) was developed for the determination of trace amount of amitraz in honey with the use of silver nanorod (AgNR) array substrate. The AgNR array substrate fabricated by an oblique angle deposition technique exhibited an excellent SERS activity with an enhancement factor of ∽107. Density function theory was employed to assign the characteristic peak of amitraz. The detection of amitraz was further explored and amitraz in honey at concentrations as low as 0.08 mg/kg can be identified. Specifically, partial least square regression analysis was employed to correlate the SERS spectra in full-wavelength with Camitraz to afford a multiple-quantitative amitraz predicting model. Preliminary results show that the predicted concentrations of amitraz in honey samples are in good agreement with their real concentrations. Compared with the conventional univariate quantitative model based on single peak’s intensity, the proposed multiple-quantitative predicting model integrates all the characteristic peaks of amitraz, thus offering an improved detecting accuracy and anti-interference ability.  相似文献   

10.
采用硼氢化钠还原硝酸银,用振荡器在不同转速下振荡得到单分散的银纳米微球和银纳米棒,再将银纳米微球及银纳米棒自组装于被3-氨丙基-三甲氧基硅烷(APTMS)修饰的玻璃基片上,制得了具有表面增强拉曼(SERS)活性的基底,分别以罗丹明6G(R6G)和罗丹明B(RB)为探针分子对这两种基底进行SERS活性检测,结果发现这两种基底均为较理想的SERS衬底。  相似文献   

11.
The study of the separation of polycyclic aromatic nitrogen heterocycles (PANHs) by reverse-phase liquid chromatography with an octadecyl stationary phase is presented. The retention behaviour of a mixture of PANHs was studied under different chromatographic conditions. A mixture of phosphate buffer/acetonitrile was used as mobile phase in isocratic and gradient modes. The effect of different pH mobile phase in the range from 2.5 to 6.5 has been investigated to describe retention changes of PANHs as a function of their acid/base properties. Different concentrations of phosphate buffer as a component of the mobile phase were used to study the effect of ionic strength. Very good RP-HPLC separation of 24 PANHs and 16 EPA polycyclic aromatic hydrocarbons (PAHs) was obtained without a pre-separation step in a test mixture and the extract of a real soil sample. Limits of detection of PANHs obtained by two detection techniques, ultraviolet-diode array detection (UV-DAD) and fluorescence detector (FD), are compared. The proposed method is tested with a real soil sample.  相似文献   

12.
Ultrathin-layer chromatography (UTLC) provides the high sensitivities and rapid separations over short distances desirable in many analytical applications. The dependence of these performance benefits on UTLC layer microstructure motivates continued stationary phase engineering efforts. A new method of modifying the elution behaviours of nanostructured thin film UTLC stationary phases is investigated in this report. Macroporous normal phase silica thin films ~5 μm thick were fabricated using glancing angle deposition (GLAD). Reactive ion etching (RIE) and a subsequent annealing treatment modified stationary phase morphology to tune migration velocity, analyte retention, and overall separation performance. Combining this technique with a RIE shadow mask enabled fabrication of adjacent concentration and separation zones with markedly different elution properties. Although produced using an entirely new approach, GLAD UTLC concentration zone media behaved in a manner consistent with traditional thin-layer chromatography (TLC) and high-performance TLC (HPTLC) concentration zone plates. In particular, these new media focused large volume, low concentration dye mixture spots into narrow bands to achieve high-quality separations. The described approach to modifying the morphology and resultant elution behaviours of nanostructured stationary phases expands the capabilities of the GLAD UTLC technique.  相似文献   

13.
Highly active,stable and affordable surface enhanced Raman scattering(SERS) substrates were obtained by electrolyzing a mixture of AgNO_3(4×10~(-4) mol/L) and Na_3C_6H_5O_7·H_2O(6×10~(-5) mol/L) for 1,2,3 and 4h at 7V.With crystal violet(CV) as a test molecule,a portable Raman spectrometer with 785 nm laser excitation was employed to carry out the SERS detection.Colloidal Ag nanoparticles prepared by electrolyzing for 3 h with the particle size of(65±17) nm is a perfect SERS substrate for the ultratrace ...  相似文献   

14.
An ion-interaction high-performance liquid chromatography method for quick separation and determination of the sulphonated dyeAcid Yellow 1, and the sulphonated azo dyes Acid Orange 7, Acid Orange 12, Acid Orange 52, Acid Red 2, Acid Red 26, Acid Red 27 and Acid Red 88 has been developed. An RP-ODS stationary phase is used, and the mobile phase contains an acetonitrile-phosphate buffer (27:73, v/v) mixture at pH 6.7, containing 2.4 mM butylamine as ion-interaction reagent. Good separations were obtained using isocratic elution and spectrophotometric detection at 460 nm. The detection limits for the eight dyes ranged from 7 to 28 microg/l for an injection volume of 100 microl. Spiked tap water samples (100 ml), containing different concentration levels (0.3-1.2 microg/l) of the dyes were analyzed after acidification (pH 3) and preconcentration in disposable solid-phase extraction C18 cartridges.  相似文献   

15.
Food safety is a topic of great importance for our society which places high demands on analytical methods. Surface enhanced Raman spectroscopy (SERS) meets the requirements for a rapid, sensitive and specific detection technique. The fact that metallic colloids, one of the most often used SERS substrates, are usually prepared in aqueous solution makes the detection of water-insoluble substances challenging. In this paper we present a SERS based approach for the detection of water-insoluble molecules by applying a hydrophobic surface modification onto the surface of enzymatic generated silver nanoparticles. By this approach the detection of the illegal water-insoluble food dyes, such as Sudan III in presence of riboflavin, as water-soluble competitor, is possible. Moreover, we demonstrate the usability of this kind of SERS substrates for determination of Sudan III out of spiked paprika extracts.  相似文献   

16.
Liu S  Zhang X  Lin X  Wu X  Fu F  Xie Z 《Electrophoresis》2007,28(11):1696-1703
A new analytical method, pressurized CEC (pCEC) with amperometric detection (AD) using 1.5 microm RP nonporous silica packed columns has been developed for the rapid separation and determination of four Sudan dyes in hot chilli. The influence of several experimental parameters on the retention behavior has been investigated. The electrochemical oxidation of Sudans I-IV separated by pCEC can be reliably monitored with a carbon electrode at +0.95 V (vs. Ag/AgCl). Fast and efficient separation of the analytes was achieved within 7 min by pCEC under the optimum conditions with an ACN/water (95:5%) mobile phase containing formic acid (pH 4.3), 5% acetone and 0.002% triethylamine using a separation voltage of 12 kV. The detection limits for four Sudan dyes ranged from 8.0 x 10(-7) to 1.2 x 10(-6) mol/L. To evaluate the feasibility and reliability of this method, the proposed pCEC-AD method was further demonstrated with hot chilli samples spiked with Sudan dyes.  相似文献   

17.
A new method to stabilize and functionalize surfaces for surface-enhanced Raman spectroscopy (SERS) is demonstrated. Atomic layer deposition (ALD) is used to deposit a sub-1-nm alumina layer on silver film-over-nanosphere (AgFON) substrates. The resulting overlayer maintains and stabilizes the SERS activity of the underlying silver while presenting the surface chemistry of the alumina overlayer, a commonly used polar adsorbent in chromatographic separations. The relative affinity of analytes for alumina-modified AgFON substrates can be determined by their polarity. On the basis of SERS measurements, dipicolinic acid displays the strongest binding to the ALD alumina-modified AgFON among a set of pyridine derivatives with varying polarity. This strong affinity for carboxylate groups makes the SERS substrate an ideal candidate for bacillus spores detection using the dipicolinate biomarker. The SERS signal from extracted dipicolinate was measured over the spore concentration range 10(-14)-10(-12) M to determine the saturation binding capacity of the alumina-modified AgFON surface. The adsorption constant was determined to be Kspore = 9.0 x 10(13) M(-1). A 10-s data collection time is capable of achieving a limit of detection of approximately 1.4 x 10(3) spores. The shelf life of prefabricated substrates is at least 9 months prior to use. In comparison to the bare AgFON substrates, the ALD-modified AgFON substrates demonstrate twice the sensitivity with 6 times shorter data acquisition time and 7 times longer temporal stability. ALD expands the palette of available chemical methods to functionalize SERS substrates, which will enable improved and diverse chemical control over the nature of analyte-surface binding for biomedical, homeland security, and environmental applications.  相似文献   

18.
The functionality of silver nanostructures prepared by means of electrochemical deposition of silver into the pores of anodic alumina oxide (AAO) template was examined in correlation to electrodeposition conditions. The optical activity as well as the chemical separation ability of prepared nanostructured films was studied. The surface enhanced Raman spectroscopy (SERS) performance was evaluated by the signals of rhodamine 6G, 4‐aminothiophenol and 2,7‐dichlorfluorescein. Nanostructured silver substrates showed moderate surface enhancement for Raman scattering from adsorbed molecules with the magnitude of about 26.9. Moreover, a novel separation/pre‐concentration function of the silver nanowire structures was indicated. The identification and position detection of the model compounds were realised with SERS. The separation of single chemical components from the two‐component mixture over the examined silver nanostructured films was sufficiently approved. The results obtained demonstrated the potential of the prepared substrate as a SERS detection and separation probe for further implementation to any instrumentation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Fan M  Wang P  Escobedo C  Sinton D  Brolo AG 《Lab on a chip》2012,12(8):1554-1560
The fabrication and on-chip integration of surface-enhanced Raman scattering (SERS) optrodes are presented. In the optrode configuration, both the laser excitation and the back-scattered Raman signal are transmitted through the same optical fiber. The SERS-active component of the optrode was fabricated through the self-assembly of silver nanoparticles on the tip of optical fibers. The application of SERS optrodes to detect dyes in aqueous solution indicated a limit of quantification below 1 nM, using nile blue A as a molecular probe. Using the optrode-integrated microfluidic chip, it was possible to detect several different dyes from solutions sequentially injected into the same channel. This approach for sequential detection of different analytes is applicable to monitoring on-chip chemical processes. The narrow bandwidth of the vibrational information generated by SERS allowed solutions of different compositions of two chemically similar dyes to be distinguished using a dilution microfluidic chip. These results demonstrate the advantages of the SERS-optrode for microfluidics applications by illustrating the potential of this vibrational method to quantify components in a mixture.  相似文献   

20.
左雪  邸铮  杜勇  杨玲  张蓉  邬国庆 《色谱》2021,39(11):1222-1229
氧化型染发产品中的多种染发剂具有不同程度的致敏性及其他毒性,建立快速、准确检测多种染发剂的方法,为该类产品监管提供有效的技术手段,十分必要。该研究建立了氧化型染发类产品中40种染发剂的高效液相色谱测定方法。染发产品经含70%乙醇的亚硫酸氢钠水溶液涡旋、超声提取,并经亚硫酸氢钠水溶液稀释后,以0.02 mol/L乙酸铵水溶液(含4%乙腈)和乙腈为流动相,采用Waters Atlantis® T3 MV Kit色谱柱(250 mm×4.6 mm, 5 μm)分离,配合柱温变化进行梯度洗脱,二极管阵列检测器检测,检测波长为235 nm和280 nm,外标法定量。结果表明,40种染发剂在各自范围内线性关系良好,相关系数均大于0.999; 40种染发剂的检出限为5~168 μg/g,定量限为16~504 μg/g;各染发剂在3个添加水平下的平均回收率为81.4%~109.6%, RSD均小于5%;各染发剂标准溶液在24 h内稳定性良好,RSD为0.2%~2.2%。与现行标准检验方法相比,该方法较大程度地增加了单一液相色谱条件下可测定的染发剂,特别是准用染发剂种类(36种),提高了检测效率,并可保证检测结果的灵敏度与准确性,适用于氧化型染发产品中多种染发剂的检测分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号