首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose 6-phosphate dehydrogenase shows a high partition coefficient in poly-(ethylene glycol)-dextran aqueous two-phase systems in comparison with those for 6-phosphogluconate dehydrogenase, phosphofructokinase and the bulk of proteins present in rat erythrocyte haemolysates. As a consequence, fractions highly enriched in glucose 6-phosphate dehydrogenase can be obtained after multiple partitions in the above systems with a counter-current distribution procedure. Phosphofructokinase shows a high affinity for Cibacron Blue and, as a result, the enzyme can be extracted in the top phase of poly(ethylene glycol)-dextran systems containing Cibacron Blue-poly(ethylene glycol) (affinity systems). The efficiency for the purification of the enzymes by partitioning is increased up to 10-fold when enzyme-rich fractions, obtained by precipitation with poly(ethylene glycol), are used instead of original haemolysate. The recovery of enzyme activities is near 100% in both instances.  相似文献   

2.
The results communicated in this paper show that rapid and reliable information about the activity of immobilized enzymes follows from calorimetric measurements. The study was done using spherical and plain carriers as well as different enzymes (urease, glucose-oxidase, invertase). The enzyme thermistor developed by Danielsson et al. was used as a measuring system. This measuring system was applied to investigate the activity of enzyme carrier complexes produced by the sol-gel technique. The influence of processing parameters could be pointed out at complexes of different forms (xerogel, gel on ceramic carrier, thin gel layers on foil, etc.). With the described calorimetric method, a fast and reliable technique for comparative determination of the activity of immobilized enzymes is available. A special advantage of this method is its variability in carriers and the generally applicable thermal measuring principle. Therefore, it seems useful for the development of new immobilization techniques.  相似文献   

3.
Proteases constitute one of the most important groups of industrial enzymes, accounting for at least 25% of the total enzyme sales, with two-thirds of the proteases produced commercially being of microbial origin (1). Immobilized enzymes are currently the subject of considerable interest because of their advantages over soluble enzymes or alternative, technologies, and the steadily increasing number of applications for immobilized enzymes. The general application of immobilized proteins and enzymes has played a central role in the expansion of biotechnology and synthesis-related industries. Proteases have been immobilized on natural and synthetic supports (2,3). In the present work, a protease from Bacillus polymyxa was partially purified with 80% ammonium sulfate precipitation followed by dialysis and chromatography using a diethylaminoethyl (DEAE)-cellulose ion exchange column. Immobilization was evaluated by using different adsorbents (chitin, chitosan, alginate, synthetic zeolite, and raw zeolite) and the storage stability and recycle of the immobilized protease determined. Immobilization yields were estimated to be 96% and 7.5%, by using alginate and chitosan, respectively, after, 24 h. The yield of the immobilization was 17% for alginate at 16h and the enzyme did not adsorb on the chitin, chitosan, synthetic zeolite, and raw zeolite.  相似文献   

4.
The commercial availability of DNA polymerases has revolutionized molecular biotechnology and certain sectors of the bio-industry. Therefore, the development of affinity adsorbents for purification of DNA polymerases is of academic interest and practical importance. In the present study we describe the design, synthesis and evaluation of a combinatorial library of novel affinity ligands for the purification of DNA polymerases (Pols). Pyrococcus furiosus DNA polymerase (Pfu Pol) was employed as a proof-of-principle example. Affinity ligand design was based on mimicking the natural interactions between deoxynucleoside-triphosphates (dNTPs) and the B-motif, a conserved structural moiety found in Pol-I and Pol-II family of enzymes. Solid-phase 'structure-guided' combinatorial chemistry was used to construct a library of 26 variants of the B-motif-binding 'lead' ligand X-Trz-Y (X is a purine derivative and Y is an aliphatic/aromatic sulphonate or phosphonate derivative) using 1,3,5-triazine (Trz) as the scaffold for assembly. The 'lead' ligand showed complementarity against a Lys and a Tyr residue of the polymerase B-motif. The ligand library was screened for its ability to bind and purify Pfu Pol from Escherichia coli extract. One immobilized ligand (oABSAd), bearing 9-aminoethyladenine (AEAd) and sulfanilic acid (oABS) linked on the triazine scaffold, displayed the highest purifying ability and binding capacity (0,55 mg Pfu Pol/g wet gel). Adsorption equilibrium studies with this affinity ligand and Pfu Pol determined a dissociation constant (K(D)) of 83 nM for the respective complex. The oABSAd affinity adsorbent was exploited in the development of a facile Pfu Pol purification protocol, affording homogeneous enzyme (>99% purity) in a single chromatography step. Quality control tests showed that Pfu Pol purified on the B-motif-complementing ligand is free of nucleic acids and contaminating nuclease activities, therefore, suitable for experimental use.  相似文献   

5.
A new method of immobilizing enzymes by ionizing radiation is described. The mixed aqueous solution of enzyme and polymerizing reagents were quickly frozen at about -70°C then were irradiated with 200 to 500 Krad by60Co γ ray. Irradiation was conducted aerobically under the low temperature. The enzyme was entraped in the resulting polymer. As the polymerizing reagent some water soluble polymers having vinyl bonds were also applicable. By this method an immobilized enzyme was prepared in bead, membrane, bag, or tube form having high enzymic activity. When the bead form was to be prepared, the mixture of enzyme and reagents were injected into precooled solvent such as n-hexane, toluene, or petroleum ether. the size of the bead was controlled freely from 10 μm to 1 cm in diameter. The surface of the bead had numerous small holes and the cross section of the bead showed a spongy structure. some acrylates were suitable for the immobilization of enzymes which required the corresponding metal ion as the essential substance. Microorganisms and multienzymes will be immobilized by this technique. This method is inexpensive, quick, simple, and reliable. Immobilized microbial cells can be sterilized by γ irradiation. Invertase was immobilized and the application test was conducted in an enzyme column.  相似文献   

6.
The reconstitution of apo enzymes with DNA oligonucleotide-modified heme (protoporphyrin IX) cofactors has been employed as a tool to produce artificial enzymes that can be specifically immobilized at the solid surfaces. To this end, covalent heme-DNA adducts were synthesized and subsequently used in the reconstitution of apo myoglobin (aMb) and apo horseradish peroxidase (aHRP). The reconstitution produced catalytically active enzymes that contained one or two DNA oligomers coupled to the enzyme in the close proximity to the active site. Kinetic studies of these DNA-enzyme conjugates, carried out with two substrates, ABTS and Amplex Red, showed a remarkable increase in peroxidase activity of the DNA-Mb enzymes while a decrease in enzymatic activity was observed for the DNA-HRP enzymes. All DNA-enzyme conjugates were capable of specific binding to a solid support containing complementary DNA oligomers as capture probes. Kinetic analysis of the enzymes immobilized by the DNA-directed immobilization method revealed that the enzymes remained active after hybridization to the capture oligomers. The programmable binding properties enabled by DNA hybridization make such semisynthetic enzyme conjugates useful for a broad range of applications, particularly in biocatalysis, electrochemical sensing, and as building blocks for biomaterials.  相似文献   

7.
Despite recent progress, our understanding of enzymes remains limited: the prediction of the changes that should be introduced to alter their properties or catalytic activities in an expected direction remains difficult. An alternative to rational design is selection of mutants endowed with the anticipated properties from a large collection of possible solutions generated by random mutagenesis. We describe here a new technique of in vitro selection of genes on the basis of the catalytic activity of the encoded enzymes. The gene coding for the enzyme to be engineered is cloned into the genome of a filamentous phage, whereas the enzyme itself is displayed on its surface, creating a phage enzyme. A bifunctional organic label containing a suicide inhibitor of the enzyme and a ligand with high affinity for an immobilized receptor are constructed. On incubation of a mixture of phage enzymes, those phages showing an activity on the inhibitor under the conditions of the experiment are labeled. These phages can be recovered by affinity chromatography. The design of the label and the factors controlling the selectivity of the selection are analyzed. The advantages of the technique and its scope in terms of the enzymes that can be engineered are discussed.  相似文献   

8.
A small-volume cell has been constructed for amperometric flow measurements with a Clark oxygen sensor and its performance was tested. The Clark sensor can be combined with immobilized enzymes for determination of substances after enzymatic conversion during which oxygen is consumed or released. Two enzymes, glucose oxidase and tyrosinase, were used and two measuring techniques, employing the enzyme immobilized on the Clark sensor membrane and with the enzyme bound on a support in a preceding reactor, were tested and compared. It was found that, in the given system, measurement with the enzyme immobilized on the sensor membrane has better sensitivity, precision and response rate.  相似文献   

9.
Smectite-organic complexes may adsorb enzymes by hydrophobic bonding mechanisms. The complexes are prepared by saturating the exchange capacity of smectite clay with organic cations; in this study hexa-decyltrimethylammonium+ trimethylphenylammonium+, hexadecylpyridinium+ and [Fe(bipyridyl)3]2+ cations were used. The immobilized enzyme may or may not be active depending upon the nature of the organic species comprising the smectite-organic complex and the nature of the enzyme. Loading capacities of the smectite-organic complexes for urease varied greatly (from 1 to 40 mg urease per 100 mg adsorbent). Enzymes immobilized on these surfaces were less thermally stable than when in homogeneous solution. Differences in thermal stability were also found between the matrices. The immobilized enzymes were much more easily acted upon by the hydrolytic enzyme, pronase, unless the pronase itself is inactive on the matrix. It is suggested that similar organo-clay-enzyme complexes may be useful as models for enzymes in natural systems, and for industrial and medical applications.  相似文献   

10.
Immobilized enzymes are becoming increasingly popular as analytical reagents because of their reusability, stability, and sensitivity to many inhibitors that would seriously interfere in assays using soluble enzymes. In this article, some of the kinetic and catalytic effects of immobilized enzymes in analysis will be discussed. The shift of the activity-pH profile curves on immobilization, the changes in temperature dependence. the inhibitor constants (K1). Michaelis constants (K m ), and the maximum velocity (Vmax). plus others, will be discussed. Finally, the use of these immobilized enzymes in fluorometric and electrochemical monitoring systems will be shown, and the future of these reagents in various areas will be discussed. A survey of enzyme electrodes will be presented as an example of the use of immobilized enzymes. Application of immobilized enzyme technology to the assay of BUN, glucose, uric acid, amino acids, ethanol. and other metabolites will be discussed.  相似文献   

11.
Degradation of textile dyes mediated by plant peroxidases   总被引:3,自引:0,他引:3  
The peroxidase enzyme from the plants Ipomea palmata (1.003 IU/g of leaf) and Saccharum spontaneum (3.6 IU/g of leaf) can be used as an alternative to the commercial source of horseradish and soybean peroxidase enzyme for the decolorization of textile dyes, mainly azo dyes. Eight textiles dyes currently used by the industry and seven other dyes were selected for decolorization studies at 25–200 mg/L levels using these plant enzymes. The enzymes were purified prior to use by ammonium sulfate precipitation, and ion exchange and gel permeation chromatographic techniques. Peroxidase of S. spontaneum leaf (specific activity of 0.23 IU/mg) could completely degrade Supranol Green and Procion Green HE-4BD (100%) dyes within 1 h, whereas Direct Blue, Procion Brilliant Blue H-7G and Chrysoidine were degraded >70% in 1 h. Peroxidase of Ipomea (I. palmata leaf; specific activity of 0.827 U/mg) degraded 50 mg/L of the dyes Methyl Orange (26%), Crystal Violet (36%), and Supranol Green (68%) in 2–4 h and Brilliant Green 54%), Direct Blue (15%), and Chrysoidine (44%) at the 25 mg/L level in 1 to 2 h of treatment. The Saccharum peroxidase was immobilized on a hydrophobic matrix. Four textile dyes, Procion Navy Blue HER, Procion Brilliant Blue H-7G, Procion Green HE-4BD, and Supranol Green, at an initial concentration of 50 mg/L were completely degraded within 8 h by the enzyme immobilized on the modified polyethylene matrix. The immobilized enzyme was used in a batch reactor for the degradation of Procion Green HE-4BD and the reusability was studied for 15 cycles, and the halflife was found to be 60 h.  相似文献   

12.
RNase (ribonuclease) mapping by nucleobase-specific endonucleases combined with mass spectrometry (MS) is a powerful analytical method for characterizing ribonucleic acids such as transfer RNAs. Typical free solution enzymatic digestion of RNA samples results in a significant amount of RNase being present in the sample solution analyzed by MS. In some cases, the RNase can lead to contamination of the high performance liquid chromatography and MS instrumentation. Here we investigate and compare several different approaches for reducing or eliminating contaminating RNase from the digested RNA sample before LC-MS analysis. Approaches using immobilized RNases were found to be most effective, with no enzyme carryover into the digested sample detected. Among the various options for immobilized RNases, we show that carbodiimide-based reactions can be used to couple RNases to carboxylic acid-terminated magnetic beads. The immobilized enzymes retain biological activity, are re-usable, and do not interfere with subsequent LC-MS analysis of the expected RNase digestion products. The use of immobilized RNases provides a simple approach for eliminating enzyme contamination in mass spectrometry-based RNase mapping experiments.  相似文献   

13.
Uses of immobilized enzyme mini-columns in flow-injection systems are described Simultaneous determination of ? × 10?5 M choline and acetylcholine is achieved by using acetylcholinesterase and choline oxidase columns. A home-made amperometric detector is used to detec the hydrogen peroxide produced enzymatically. An ion-exchange column is used on-line to remove interferences at the amperometric detector during analysis of blood and brain samples. Immobilization of the lipid enzymes phospholipase-C and -D is described. These enzymes are used for the determination of phospholipids. Total phospholipids (1– mM) are determined with a combination of phospholipase-D, lipase and glycerol-3-phosphate oxidase. All the methods described are simple and reproducible and the immobilized enzymes show good stability.  相似文献   

14.
A CE method based on a dual‐enzyme co‐immobilized capillary microreactor was developed for the simultaneous screening of multiple enzyme inhibitors. The capillary microreactor was prepared by co‐immobilizing adenosine deaminase and xanthine oxidase on the inner wall at the inlet end of the separation capillary. The enzymes were first immobilized on gold nanoparticles, and the functionalized gold nanoparticles were then assembled on the inner wall at the inlet end of the separation capillary treated with polyethyleneimine. With the developed CE method, the substrates and products were baseline separated within 3 min. The activity of the immobilized enzyme can be directly detected by measuring the peak height of the products. A statistical parameter Z′ factor was recommended for evaluation of the accuracy of a drug screening system. In the present study, it was calculated to be larger than 0.5, implying a good accuracy. Finally, screening a small compound library containing two known enzyme inhibitors and 20 natural extracts by the proposed method was demonstrated. The known inhibitors were identified, and some natural extracts were found to be positive for two‐enzyme inhibition by the present method.  相似文献   

15.
Fermentation broth normally contains many extracellular enzymes of industrial interest. To separate such enzymes on-line could be useful in reducing the cost of recovery as well as in keeping their yield at a maximum level by minimizing enzyme degradation from broth proteases (either the desired enzymes or the proteases could be removed selectively or both removed together and then separated). Several large-scale separation methods are candidates for such on-line recovery such as ultrafiltration, precipitation, and two-phase partitioning. Another promising technique for on-line recovery is adsorptive bubble fractionation, the subject of this study. Bubble fractionation, like ultrafiltration, does not require contaminating additives and can complement ultrafiltration by preconcentrating the enzymes using the gases normally present in a fermentation process. A mixture of enzymes in an aqueous bubble solution can, in principle, be separated by adjusting the pH of that solution to the isoelectric point (pI) of each enzyme as long as the enzymes have different pIs. The model system investigated here is comprised of three enzyme separations and the problem is posed as the effect of pectinase (a charged enzyme) on the bubble fractionation of invertase (a relatively hydrophilic enzyme) from α-amylase (a relatively hydrophobic enzyme). The primary environmental variable studied, therefore, is the pH in the batch bubble fractionation column. Air was used as the carrier gas. This prototype mixture exemplifies an aerobic fungal fermentation process for producing enzymes. The enzyme concentration here is measured as total protein concentration by the Coomassie Blue (Bradford) solution method (1), both as a function of time and column position for each batch run. Since, from a previous study (2), it was found that invertase and α-amylase in a two-enzyme system can be partially separated in favor of one vs the other at two different pHs (pH 5.0 and 9.0) with significant separation ratios, emphasis is placed on the effect of pectinase at these pHs. In this study, the addition of pectinase reduced the total separation ratio of the α-amylase-invertase mixture at both pHs.  相似文献   

16.
Calmodulin-mediated reversible immobilization of enzymes   总被引:1,自引:0,他引:1  
This work demonstrates the use of the protein calmodulin, CaM, as an affinity tag for the reversible immobilization of enzymes on surfaces. Our strategy takes advantage of the of the reversible, calcium-mediated binding of CaM to its ligand phenothiazine and of the ability to produce fusion proteins between CaM and a variety of enzymes to reversibly immobilize enzymes in an oriented fashion to different surfaces. Specifically, we employed two different enzymes, organophosphorus hydrolase (OPH) and beta-lactamase and two different solid supports, a silica surface and cellulose membrane modified by covalently attaching a phenothiazine ligand, to demonstrate the versatility of our immobilization method. Fusion proteins between CaM-OPH and CaM-beta-lactamase were prepared by using genetic engineering strategies to introduce the calmodulin tail at the N-terminus of each of the two enzymes. In the presence of Ca(2+), CaM adopts a conformation that favors interaction between hydrophobic pockets in CaM and phenothiazine, while in the presence of a Ca(2+)-chelating agent such as EGTA, the interaction between CaM and phenothiazine is disrupted, thus allowing for removal of the CaM-fusion protein from the surface under mild conditions. CaM also acts as a spacer molecule, orienting the enzyme away from the surface and toward the solution, which minimizes enzyme interactions with the immobilization surface. Since the method is based on the highly selective binding of CaM to its phenothiazine ligand, and this is covalently immobilized on the surface, the method does not suffer from ligand leaching nor from interference from other proteins present in the cell extract. An additional advantage lies in that the support can be regenerated by passing through EGTA, and then reused for the immobilization of the same or, if desired, a different enzyme. Using a fusion protein approach for immobilization purposes avoids the use of harsh conditions in the immobilization and/or regeneration steps, which could cause inactivation of the immobilized enzyme. Moreover, we have demonstrated that the CaM affinity tag allows immobilization of enzymes on a variety of surfaces without compromising their enzymatic activity substantially; for example, the immobilized OPH retained more than 80% of the activity of the free enzyme. Our results with beta-lactamase showed the feasibility of using a phenothiazine surface in several consecutive loading and regeneration cycles. This can be advantageous when expensive and/or difficult to obtain immobilization surfaces have to be employed; the immobilization surface could be reused to immobilize the same or a different enzyme using the CaM affinity tail. We also determined that the phenothiazine-modified silica particles are stable for long periods of time, i.e., up to 2 years when stored at 4 degrees C. It is envisioned that this type of reversible immobilization may find applications in the development of reversible, reusable biosensors and bioreactors endowed with the additional advantage that the biological element at the surface of the sensor or bioreactor could be replaced under mild conditions when needed to sense or process a different target molecule.  相似文献   

17.
Mesoporous materials as support for immobilized enzymes have been explored extensively during the last two decades, primarily not only for biocatalysis applications, but also for biosensing, biofuels and enzyme-controlled drug delivery. The activity of the immobilized enzymes inside the pores is often different compared to that of the free enzymes, and an important challenge is to understand how the immobilization affects the enzymes in order to design immobilization conditions that lead to optimal enzyme activity. This review summarizes methods that can be used to understand how material properties can be linked to changes in enzyme activity. Real-time monitoring of the immobilization process and techniques that demonstrate that the enzymes are located inside the pores is discussed by contrasting them to the common practice of indirectly measuring the depletion of the protein concentration or enzyme activity in the surrounding bulk phase. We propose that pore filling (pore volume fraction occupied by proteins) is the best standard for comparing the amount of immobilized enzymes at the molecular level, and present equations to calculate pore filling from the more commonly reported immobilized mass. Methods to detect changes in enzyme structure upon immobilization and to study the microenvironment inside the pores are discussed in detail. Combining the knowledge generated from these methodologies should aid in rationally designing biocatalyst based on enzymes immobilized in mesoporous materials.  相似文献   

18.
Immobilized enzymes are becoming increasingly popular as analytical reagents because of their reusability, stability, and sensitivity to many inhibitors that would seriously interfere in assays using soluble enzymes. In this article, some of the kinetic and catalytic effects of immobilized enzymes in analysis will be discussed. The shift of the activity-pH profile curves on immobilization, the changes in temperature dependence, the inhibitor constants (Ki), Michaelis constants (Km), and the maximum velocity ( Vmax), plus others, will be discussed. Finally, the use of these immobilized enzymes in fluorometric and electrochemical monitoring systems will be shown, and the future of these reagents in various areas will be discussed. A survey of enzyme electrodes will be presented as an example of the use of immobilized enzymes. Application of immobilized enzyme technology to the assay of BUN, glucose, uric acid, amino acids, ethanol, and other metabolites will be discussed.  相似文献   

19.
A new approach for the control and interruption of enzymatic reactions via selective enzyme immobilization has been developed. The technique was exemplified by the use of three model enzymes with the corresponding macromolecular substrates: α-amylase/starch, trypsin/ insoluble collagen, and alkaline phosphatase/plasmid DNA. Prior to incubation with its substrate, each enzyme was provided withde novo thiol-groups by a two-step reaction involvingN-succinimidyl-3-(2-pyridyldithio) propionate (SPDP) and DTT. The chemical modification was achieved such that at least 80% of the native enzyme activity was preserved in all cases. In order to interrupt rapidly the reactions in which the enzymes were used, the modified enzyme was immobilized by reaction via its thiol groups on a thiolsulfinate-agarose derivative. The gel-bound enzyme could then be easily removed from unreacted substrate and product by filtration or centrifugation. Comparative studies showed that the immobilized enzymes had much lower activities in the reactions studied than the corresponding soluble ones. The potential for enzyme reuse was also demonstrated with the a-amylase derivatives, which were quantitatively released and eluted in fully active form from the agarose. We have shown that it is possible to achieve practically complete enzyme immobilization in short times and thus to control the progress of the reactions. Because of its simplicity and high efficiency, this approach may represent an interesting alternative for biotechnological processes involving macromolecular or solid substrates.  相似文献   

20.
Tang Z  Wang T  Kang J 《Electrophoresis》2007,28(17):2981-2987
A method for creating an immobilized capillary acetylcholinesterase (AChE) reactor based on a layer-by-layer (LBL) assembly for inhibitor screening is described. The unique capillary AChE reactor was easily prepared by the instrument in three steps: first, a 0.5 cm long plug of a solution of the cationic polyelectrolyte polydiallyldimethylammonium (PDDA) was injected into the capillary to produce a positively charged coating on the surface of the capillary; subsequently, the enzyme solution with the same plug length was injected into the capillary and incubated for 10 min to immobilize the enzyme on the capillary wall via electrostatic interaction; third, PDDA solution with the same plug length was injected again into the capillary to cover the immobilized enzyme by forming PDDA-AChE-PDDA sandwich-like structure. The enzyme reactor can be easily renewed after removing the immobilized enzyme by flushing the column with 1 M NaCl solution. Activity of the immobilized enzyme can be assayed simply by carrying out an electrophoretic separation, i.e., the substrate solution was injected and incubated for a short time, followed by applying a voltage to separate the product from the unreacted substrate. The measured peak area of the product then represented the enzyme activity. For enzyme inhibitor screening, the mixture solution of the substrate and the inhibitor was injected and assayed the reduction of the enzyme activity. The immobilized enzyme could withstand 100 consecutive assays by only losing 10% activity. The reproducibility in terms of time-to-time, day-to-day, and batch-to-batch was measured with RSD% less than 4.7%. Furthermore, the screening system was validated by a known inhibitor. Finally, screening a small compound library containing four known AChE inhibitors and 42 natural extracts was demonstrated, and species with inhibition activity can be straightforwardly identified with the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号