首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 Introduction Autonomous orbit determination of satellite means that orbit determination is solely finished on board, independent of the observation of ground system. Study on autono-mous orbit determination of satellite has been very hot in the field of orbit determination currently internationally due to its significance in application. There are two common ways of autonomous orbit determination internationally. One is autonomous orbit deter-mination based on navigation system, such as on-b…  相似文献   

2.
Because of ensuring very low propagation delay between satellites, and providing global space-based broadband network services, low earth orbit (LEO) satellite constellations with laser inter-satellite links (ISLs) are considered to be the enabling technology to satisfy the increasing data traffic demand. However, significant Doppler can be observed by the onboard terminals on the ISLs, due to the high relative speed of the two communicating LEO satellites. This paper describes an analytic derivation of the Doppler wavelength shift measured by the terminal onboard a satellite on the signal transmitted through the ISLs. The Point-Ahead Mechanism of the optical ISLs is considered in the analytical expression of the Doppler wavelength shift. Then, in terms of the ISLs characteristics of the satellite constellations, the expression of Doppler wavelength shift is deduced into two aspects. First, for the full time accessing ISLs, it evolves as a function of the constellation parameters. Thus, the Doppler characterization for two kinds of interorbit full time accessing ISLs of LEO satellite constellations is analyzed. Second, for the intermittent accessing ISLs, the expression of Doppler wavelength shift is given as a function of the minimum ISL distance between two communicating satellites. And the visibility duration of the destination satellite at the source satellite is estimated for the intermittent ISLs. This work is helpful to evaluate the design of constellation networking.  相似文献   

3.
With the development of optical space communications, a global space-based optical backbone network is currently proposed by using broadband laser inter-satellite links (ISLs) which enable routing traffic through the space. Satellite optical networking techniques based on wavelength division multiplexing (WDM) ISLs can transit significantly high data rates signals. In this letter, a new function of wavelength excursion due to Doppler-effect is developed for the ISLs, considering the conception of pointing ahead mechanism. The characteristic of wavelength excursion induced by Doppler-effect is examined in one of low earth orbit (LEO) satellite constellation networks named the next-generation LEO system (NeLS) with WDM ISLs assumed, and the influence on its communications caused by wavelength excursion is analyzed.  相似文献   

4.
Low earth orbit (LEO) satellite constellations using laser inter-satellite links (ISLs) are recognized as a promising technology to provide global broadband network services. In this paper, the queuing delay model of an optical space network built on LEO satellite constellations is established. It is assumed that the optical space network employs wavelength division multiplexing ISLs with wavelength routing technology to communication satellites and makes routing decisions. With consideration of the network task characterizations such as distribution of task arrival time and task holding duration, simulation experiment results are analyzed and the expression of optical space network queuing delay is given. Both theoretical analysis and simulation results show that features of queuing delay vary with distribution characterizations of the network tasks. It is hoped that the study can be helpful to evaluate the design of constellation networking.  相似文献   

5.
The star tracker, an optical attitude sensor with high accuracy, is widely used in satellites for attitude determination and control. However, it is susceptible to the sunlight and the earthlight for application on satellites in the sun-synchronous orbit. Therefore, the suppression of the sunlight and the earthlight is important for the star tracker. In this Letter, a vector model is proposed to describe the relationship among the Sun, the Earth, and the satellite body, and, based on the equations of the boundary curves, the vector areas free from the sunlight and the earthlight in the body coordinate system of the satellite are derived. Meanwhile, the installation orientation of the star tracker and the corresponding exclusion angle of the earthlight are optimized. The simulation results indicate that the optimization method for the installation orientation and the exclusion angle of the star tracker is accurate and effective.  相似文献   

6.
卫星自主导航技术具有重要的军事价值。提出了一种基于焦平面的红外静态地球敏感器和可见光星敏感器的天文自主导航系统。详细论述了天文导航的原理,推导了地心矢量和地心距的解算公式,分析了影响地心矢量和地心距解算精度的因素,并给出了数值仿真的结果。结果表明该系统具有体积小、重量轻、功耗小、成本低和无转动部件等优点,适用于各种轨道航天器的姿态确定与轨道确定。  相似文献   

7.
A new method for determination of satellite orbits by transfer   总被引:8,自引:8,他引:0  
The original idea of a new method for determination of satellite orbits by transfer is from Two-Way Satellite Time and Frequency Transfer (TWSTFT). The original method is called “determination of satellite orbit by transfer”. The method is not only for determination of satellite orbit but also for the time transfer with high accuracy and precision. The advantage is that the accuracy and the precision for determination of satellite orbit are very high and the new method is favorable for various applications. The combination of various signals disseminated and received forms various modes of satellite orbit determinations. If receivers at stations receive the own station-disseminated signals via a satellite transponder, it forms an orbit determination mode called “receiving the own station-disseminated signals mode”. If receivers at all stations receive the signals disseminated from the master station via satellite transponders, it forms an orbit determination mode called “receiving the master station-disseminated signals mode”. If all of receivers at stations receive all stations-disseminated signals via satellite transponders, it forms an orbit determination mode called “receiving all stations-disseminated signals mode”. Also there are other combinations of signals for satellite orbit determination. For different orbit determination modes with different signal combinations, their rigorous formulae of processing are hereby presented in this paper. The accurate and the precise satellite orbit determination for both of the modes, “receiving the own station-disseminated signals mode” and “receiving the master station-disseminated signals mode” is attempted. It shows that the accuracy and precision for both of modes are nearly the same, the ranging accuracy is better than 1 cm, and the observation residuals of satellite orbit determination are better than 9 cm in the observation duration of 1 day. Supported by the National Basic Research and Development Program of China (Grant No. 2007CB815503100453001)  相似文献   

8.
详细介绍了MATAB(矩阵实验室)与STK(卫星工具箱)软件互联的方法。STK提供了相应的二次开发接口,可供MATLAB等软件进行二次开发。利用MATLAB和STK软件组合搭建仿真环境,以某Walker星座的设计与优化算法为例,具体介绍了联合仿真步骤流程及GUI界面的设计方法,并综合考虑了卫星轨道、传感器以及卫星编队等相关参数对星座最优设计的影响。结果表明,利用MATLAB和STK组合仿真能够以图像及数据列表的形式方便直观的给出最优结果,通过联合仿真,较大程度上减小了MATLAB的编程工作量,同时通过GUI界面的设计,以可视化的形式对主体程序进行集成,只需输入参数,便可快速进行相应的轨道仿真与数据输出,避免了在进行卫星星座设计时需反复对STK参数进行调整的工作。在对卫星星座设计与运行轨道的问题分析中,MATLAB/STK联合仿真相较于使用单一软件进行问题分析而言,要更加便利、形象直观。  相似文献   

9.
Alignment error of an image sensor relative to the optical axis of a star sensor head and alignment errors between four heads were calculated from pictures taken in an orbital experiment. When comparing the image sensor alignment parameters in the orbital test and a ground test, both values matched well. By determining the relative relationship of the four heads using four pictures taken at the same moment in orbit and uploading the parameters to the star sensor system in orbit, the estimated attitude error was improved from 0.29 to 0.17°, though the accuracy was limited by the ±0.2° determination accuracy of the satellite itself. We estimated the attitude determination accuracy from separation angles between boresights of the four heads, calculated from pattern matching between downloaded pictures and a star catalogue. The estimated accuracy, in terms of potential optical performance, was 0.60 arcmin at 3σ, which is sufficient to satisfy the specification of 1 arcmin.  相似文献   

10.
A geostationary (GEO) satellite may serve as a navigation satellite, but there is a problem that maneuvers frequently occur and the forces are difficult to model. Based on the technique of determining satellite orbits by transfer, a predicted orbit with high accuracy may be achieved by the method of statistical orbit determination in case of no maneuver force. The predicted orbit will soon be invalid after the maneuver starts, and it takes a long time to get a valid orbit after the maneuver ends. In order to improve ephemeris usability, the method of rapid orbit forecasting after maneuvers is studied. First, GEO satellite movement is analyzed in case of maneuvers based on the observation from the orbit measurement system by transfer. Then when a GEO satellite is in the free status just after maneuvers, the short arc observation is used to forecast the orbit. It is assumed that the common system bias and biases of each station are constant, which can be obtained from orbit determination with long arc observations. In this way, only 6 orbit elements would be solved by the method of statistical orbit determination, and the ephemeris with high accuracy may be soon obtained. Actual orbit forecasting with short arc observation for SINOSAT-1 satellite shows that, with the tracking network available, the precision of the predicted orbit (RMS of O-C) can reach about 5 m with 15 min arc observation, and about 3 m with 30 min arc observation. Supported by the National High Technology Research and Development Program of China (Grant No. 2006AA12Z322), the National Basic Research Program of China (Grant No. 2007CB815503), and the West Light Program of Chinese Academy of Sciences (Grant No. 2007LH01)  相似文献   

11.
A simplex method of orbit determination (SMOD) is presented to solve the problem of orbit determination for maneuvering satellites subject to small and continuous thrust. The objective function is established as the sum of the nth powers of the observation errors based on global positioning satellite (GPS) data. The convergence behavior of the proposed method is analyzed using a range of initial orbital parameter errors and n values to ensure the rapid and accurate convergence of the SMOD. For an uncontrolled satellite, the orbit obtained by the SMOD provides a position error compared with GPS data that is commensurate with that obtained by the least squares technique. For low Earth orbit satellite control, the precision of the acceleration produced by a small pulse thrust is less than 0.1% compared with the calibrated value. The orbit obtained by the SMOD is also compared with weak GPS data for a geostationary Earth orbit satellite over several days. The results show that the position accuracy is within 12.0 m. The working efficiency of the electric propulsion is about 67% compared with the designed value. The analyses provide the guidance for subsequent satellite control. The method is suitable for orbit determination of maneuvering satellites subject to small and continuous thrust.  相似文献   

12.
Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (MEO) satellites.Precise orbit determination (POD) for the satellites is limited by the geographic distribution of regional tracking stations.Independent time synchronization (TS) system is developed to supplement the regional tracking network,and satellite clock errors and orbit data may be obtai...  相似文献   

13.
支帅  张刘  李欣璐 《中国光学》2014,7(4):581-587
本文对星敏感器的姿态参数进行仿真计算,实现了观测星的提取及星图模拟。根据二维高斯分布模型对星点进行灰度弥散;考虑了噪声等因素的影响,实时模拟星敏感器在轨状态下拍摄星空的真实星图。实验证明,通过仿真模拟在轨运行卫星所拍摄的星图,可以为星敏感器星点提取、星图识别、姿态解算等功能算法提供验证。  相似文献   

14.
Geostationary satellites(GEOs) play a significant role in the regional satellite navigation system.Simulation experiments show that the clock corrections could be mitigated through a single strategy or double differencing strategies for a navigation constellation,but for the mode of individual GEO orbit determination,high precision orbit and clock correction could not be obtained in the orbit determination based on the pseudorange data.A new GEO combined precise orbit determination(POD) strategy is studied in this paper,which combines pseudorange data and C-band transfer ranging data.This strategy overcomes the deficiency of C-band transfer ranging caused by limited stations and tracking time available.With the combination of transfer ranging and pseudorange data,clock corrections between the GEO and the stations can be estimated simultaneously along with orbital parameters,maintaining self-consistency between the satellite ephemeris and clock correction parameters.The error covariance analysis is conducted to illuminate the contributions from the transfer ranging data and the psudoranging data.Using data collected for a Chinese GEO satellite with 3 C-band transfer ranging stations and 4 L-band pseudorange tracking stations,POD experiments indicate that a meter-level accuracy is achievable.The root-mean-square(RMS) of the post-fit C-band ranging data is about 0.203 m,and the RMS of the post-fit pseudorange is 0.408 m.Radial component errors of the POD experiments are independently evaluated with the satellite laser ranging(SLR) data from a station in Beijing,with the residual RMS of 0.076 m.The SLR evaluation also suggests that for 2-h orbital predication,the predicted radial error is about 0.404 m,and the clock correction error is about 1.38 ns.Even for the combination of one C-band transfer ranging station and 4 pseudorange stations,POD is able to achieve a reasonable accuracy with the radial error of 0.280 m and the 2-h predicted radial error of 0.888 m.Clock synchronization between the GEO and tracking stations is achieved with an estimated accuracy of about 1.55 ns,meeting the navigation service requirements.  相似文献   

15.
组合大视场星敏感器自主定轨中的星光折射   总被引:2,自引:0,他引:2  
就组合大视场星敏感器卫星自主定轨方法中的恒星观测,在球形大气假设下,直接由大气折射率、光在大气中的折射路径和斯涅耳定律出发,建立星光大气折射模型。在60 km高度以上星光穿过时不产生大气折射的假设下,得到星光在60 km高度的大气层上的仰角θ60、星光折射角γ和星光切线高度h的关系,且当星光穿过20~60 km的高度大气范围时,θ60的范围约在0°~7°之间。最后应用该大气折射模型进行了轨道确定仿真,说明折射模型的有效性。  相似文献   

16.
星敏感器是当前广泛应用于航天器姿态测量的高精度光学敏感器。小型化、低功耗、高精度、高更新率是现阶段星敏感器发展的共同特点。介绍了APS图像传感器的特点,并将其与CCD进行了详细的比较。对APS图像传感器的重要特性参数进行了分析,并介绍了一种由北京控制工程研究所研制的小型化高精度APS星敏感器及其设计方法。介绍了适用于GEO轨道的APS星敏感器图像在轨校正方法和APS图像传感器的发展方向。  相似文献   

17.
Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchronization is hardly influenced by satellite orbit error,atmosphere delay,tracking station coordinate error and measurement model error.Meanwhile,single-way time comparison can be realized through the method of Multi-satellite Precision Orbit Determination(MPOD)with pseudo-range and carrier phase of monitor receiver.It is proved in the constellation of 3GEO/2IGSO that the radial orbit error can be reflected in the difference between two-way time comparison and single-way time comparison,and that may lead to a substitute for orbit evaluation by SLR.In this article,the relation between orbit error and difference of two-way and single-way time comparison is illustrated based on the whole constellation of BDS.Considering the all-weather and real-time operation mode of two-way time comparison,the orbit error could be quantifiably monitored in a real-time mode through comparing two-way and single-way time synchronization.In addition,the orbit error can be predicted and corrected in a short time based on its periodic characteristic.It is described in the experiments of GEO and IGSO that the prediction accuracy of space signal can be obviously improved when the prediction orbit error is sent to the users through navigation message,and then the UERE including terminal error can be reduced from 0.1 m to 0.4 m while the average accuracy can be improved more than 27%.Though it is still hard to make accuracy improvement for Precision Orbit Determination(POD)and orbit prediction because of the confined tracking net and the difficulties in dynamic model optimization,in this paper,a practical method for orbit accuracy improvement is proposed based on two-way time comparison which can result in the reflection of orbit error.  相似文献   

18.
为了提高高动态环境下星敏感器的质心提取精度,提出了一种基于自适应滤波的在轨校正方法.该方法能够适应角速度变化的星敏感器,自适应的调整校正矩阵.使用提出的基于时空相关性的噪声估计滤波器跟随星点窗口实时更新校正矩阵,对星点准确校正.与传统地面校正方法相比,本文方法不仅减少了成本,且实时更新校正矩阵,校正更加可靠.通过实验验...  相似文献   

19.
大气密度探测实验卫星PN1B于2015年9月在太原卫星发射中心成功发射,为了实现对该卫星星载GPS定轨数据提供检核标准及高精度测轨应用要求,依据卫星无法提供阵列结构激光反射器所需要的安装面积的限制,首次采用通光口径为10 mm的微小激光反射器按照不同的指向分布在卫星的棱边。利用TROS1000流动人卫激光测距系统对该卫星进行追踪和激光测距试验,测量结果表明激光回波数据充足,每秒平均激光回波光子数达173个,标志着此类微小激光反射器的应用将会在卫星轨道精密定轨方面发挥重要作用。  相似文献   

20.
星敏感器是目前航天器姿态测量精度最高的器件,与传统的单视场星敏感器相比,多视场星敏感器可以实现三轴同样高精度的姿态测量,提高姿态测量精度。针对单视场星敏感器姿态确定问题,推导了以最小代价函数为指标的QUEST姿态确定算法。对于多视场星敏感器,通过坐标变换方法将多个视场的导航星矢量转换到同一视场中,再利用QUEST算法得到航天器姿态。最后仿真结果表明,坐标变换后进行姿态确定得到的姿态数据与单个视场所得的姿态数据相同,验证了方法的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号