首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Adhesive effect of polyethylene moldings by use of high density polyethylene gels in organic solvents such as decalin, tetralin, ando-dichlorobenzene was investigated by shearing tests, electron microscope, and DSC measurements. All of the gels showed such a strong adhesive strength over 36 kg/cm2 that polyethylene plates of 3 mm in thickness gave rise to necking sufficient for practical use, when heated at 120 °C for 2 h. In particular, the gel in tetralin showed a strong adhesive strength when heated at 110 °C. It was found that adhesive strength increases with the heating temperature; the temperatures at which adhesive strength begins to increase differ depending on the type of polyethylene sample and solvent. It is apparent that polyethylene gels exhibit an adhesive effect when they are heated at higher temperatures than the gel melting temperatures, and that the closer the SP values of solvents used for the gelation are to the molded polyethylene, the stronger the adhesion of the polyethylene molding.  相似文献   

2.
Adhesive effect of low density polyethylene (LDPE) gels in organic solvents such as decalin, tetralin, ando-dichlorobenzene on high density polyethylene (HDPE) moldings has been investigated by shearing tests, electron microscopy, and DSC measurements. When heated at 110°C for 2 h, all of the gels showed strong adhesive strengths around 30 kg/cm2, which is sufficiently strong for practical uses. It has been found that the adhesive strength increases with the heating temperature and that the temperature at which the heated gel begins to exhibit the adhesive effect depends upon solvents and is about 30° lower than that of the HDPE gels.  相似文献   

3.
Adhesive effect of polyethylene gels on the molded polyethylene by heating with microwaves has been investigated. Polyethylene gels in polar organic solvents such aso-xylene, chlorobenzene,o-dichlorobenzene,m-dichlorobenzene, 1,1,1,2-tetrachloroethane, and 1,1,2,2-tetrachloroethane were used as adhesives. All of these gels showed adhesive effect when heated with microwaves. In particular, the gels in 1,1,2,2-tetrachloroethane showed such strong adhesion that polyethylene plates of 3 mm in thickness and 20 mm in width gave rise to necking by heating for 8 min in a 500 W (2450 MHz) microwave oven.  相似文献   

4.
Adhesive effect of linear low density polyethylene (LLDPE) gels in organic solvents such as decalin, tetralin, and o-dichlorobenzene on high density polyethylene (HDPE) moldings has been investigated by shearing tests, and DSC measurements. For all of the gels the temperature at which the heated gel starts to exhibit the adhesive effect was about 70 °C, which is similar to the result of LDPE gel. In particular, when heated at 110 °C, LLDPE gel in tetralin showed such a strong bond strength that polyethylene plates of 3 mm in thickness and 20 mm in width gave rise to necking. It was found that LLDPE gel behaved as though it added LDPE gel to HDPE gel namely LDPE-like components in LLDPE resin exerted the adhesive effect at lower heating temperature, HDPE-like components exerted the strong adhesive effect at higher heating temperature.  相似文献   

5.
Linear polyethylene and isotactic polypropylene standards were injected into columns which contained MFI (SH-300 and silicalite) or faujasite (CBV-780) type zeolites. 1,2,4-Trichlorobenzene, cyclohexanone, 2-ethyl-hexanol, decalin and tetralin were used as mobile phases at 140 degrees C. It was found that polyethylene is fully retained on zeolite SH-300 when decalin is used as a mobile phase. Moreover, polyethylene is partially retained on zeolite SH-300 from tetralin and from 1,2,4-tichlorobenzene, on silicalite from decalin and in a very small extent on zeolite CBV-780 from decalin. Using all other solvents, polyethylene and polypropylene were not retained in any of the columns tested. This is the first experimental observation of polyethylene adsorption from a solvent on a chromatographic stationary phase.  相似文献   

6.
Ultra-high molecular weight polyethylene UHMWPE (M w=4 · 106,I s=O g/ 10 min), high density polyethylene of normal molecular weight NMWPE (I s= 4.8 g/10 min) and their blends have been investigated by means of thermomechanical loading in constant and impulse regime. It has been established that after melting, NMWPE passes to a viscous-liquid state. After melting at 138 °C UHMWPE passes to a high-elastic state. The transition of UHMWPE to a viscous-liquid state takes place at temperatures higher than 180 °C and is accompanied by a high-elastic reversible deformation. The blends of UHMWPE with 10 and 20 mass % of NMWPE show a plateau on the thermomechanical curves, corresponding to a high-elastic state, in a shorter temperature range where the deformation is greater. The blends containing the higher percent of NMWPE show thermomechanical curves lacking such a plateau. All blends are characterized by a singular thermomechanically defined temperature of melting, which increases with increase of UHMWPE content. The existence of the high-elastic state in the curves of UHMWPE and its blends containing NMWPE less than 30 mass % above their melting temperatures is explained by the high degree of physical crosslinking of UHMWPE.  相似文献   

7.
The present work was aimed to improve further upon the mechanical properties of gel spun polyethylene fibres of ultrahigh modulus and tenacity. Cross-links were introduced by electron irradiation of the gelsbefore drawing. Under the present circumstances this resulted in much more favourable creep properties, of the fibres and tapes and also to retention of much of their strength after holding at 200 °C, without, however, significantly affecting drawability and the resulting high modulus and strength.  相似文献   

8.
A simple, physical model has been developed to describe orientation in thermoplastic polymers, involving the boundary slip and rotation of rod-like structural elements. Orientation parameters have been calculated, and expressions for the birefringence and elastic mechanical anisotropy deduced. Results on cold-drawn, low-density polyethylene agree well with this model.  相似文献   

9.
The self-diffusion coefficients in melts of polyethylene fractions and polystyrene standards were measured by the NMR pulsed field gradient technique and compared with those measured by other techniques. The data agree very well if one takes into account the molar mass distribution of the samples and the free volume of the matrix. For molar masses much higher than the critical molar massM c, reptation is confirmed,D M –2 holds. BelowM e=Mc/2 the self-diffusion coefficients corrected for constant free volume show approximately the dependenceD M –1 confirming Rouse-like diffusion. This result was also obtained by investigating the self-diffusion of the molecules with different molar masses of a polyethylene fraction with a rather broad molar mass distribution aroundM e andM c, i. e. diffusion in a constant matrix. In the molar mass region betweenM c and about 3 ·M c the observed molar mass dependence of self-diffusion can be explained by tube formation. The constraint release model of Graessley seems to slightly overestimate the self-diffusion coefficients.  相似文献   

10.
Cross-linking of ultra-high molecular weight polyethylene was performed with electron-beam irradiation in the range of radiation dose from 12 to 96 Mrad under nitrogen. Dry gel films and melt films were used as specimens. Two kinds of cross-linked specimens could be kept at 200°C for a prolonged time in an undeformed state and this tendency was independent of radiation dose. The elongation of the gel films hampered the heat-resistant effect and the drawn specimens were broken at temperatures lower than 175 °C. The elongation of the melt films could not be realized, because of a marked fixation of chains in the fiber network, even at a dose of 12 Mrad.  相似文献   

11.
While it was possible to demonstrate in the first part of this paper [1] that the granular structure in an LPE melt created by short-time staining with chlorosulfonic acid is an artifact, it was demonstrated in the second part [2] that an artifact can actually be useful. It makes it possible to differentiate between the mobile melt and a very thin layer of fixed melt on the crystalline lamellae which corresponds to the switchboard model.This third part reports the discovery of a smectic type of liquid crystal intermediate state both in the melting and in the crystallization processes, which many authors regarded as impossible because of the flexibility of the molecules in polyethylene.Extracts presented at the 32nd Hauptversammlung der Kolloid-Gesellschaft und Berliner Polymeren Tage 1985, 2–4 October 1985 in Berlin  相似文献   

12.
The tensile strength of gel-spun polyethylene fibers obtained after hot-drawing depends on spinning conditions such as spinning speed, spinning temperature, spinline stretching, polymer concentration, and molecular weight/molecular weight distribution. High deformation rates in the spinline result in shish-kebab structures which after hot-drawing lead to fibers with poor properties. This is in contrast to hot-drawn fibers obtained from gel-spun fibers with a lamellar structure. Lamellar or shish-kebab structures in the gel-spun fibers can be distinguished by means of DSC experiments on strained fibers. On the basis of these experiments a qualitative prediction of the final tensile properties can be made. DSC experiments on (un)strained hot-drawn fibers show that in the case of shish-kebab structures an incomplete transformation into a fibrillar structure takes place which partly explains the low tensile strength. Chain slippage which becomes possible after the orthorhombic-hexagonal phase transition is involved in the fracture mechanism. The shift of the orthorhombic-hexagonal phase transition to higher temperatures with increasing tensile strength indicates that the increase in strength corresponds to an increase in length of the crystal blocks. Consequently, creep failure also occurs at higher stresses. The melting behavior of cold-drawn and hot-drawn fibers is qualitatively similar, but the transformation into a fibrillar structure is more complete in the latter case.  相似文献   

13.
The dielectric properties of composite samples prepared by polymerizing ethylene on the surface of filler are compared to those of mechanical mixtures consisting of CaCO3 and ultra high molecular weight polyethylene. After presenting the normalized master curves of AC dispersion and loss measured at different relative humidities, the field strength dependence of the 50 Hz AC and DC responses were studied. With one exception, the effect is small. Thermally stimulated polarization (TSP) and depolarization (TSD) curves are presented; the peak appearing on the TSP curves of the samples stored under ambient conditions is interpreted as a result of water desorption. The high temperature DC conductivity and the depolarization current density are higher in the composites and mechanical mixtures than in the matrix. The dielectric properties of the wet filler particles were calculated from the measured composite and matrix data using various mixture formulae. The results can be understood and interpreted if the dielectric properties of adsorbed water are described by the cluster theory of dielectric relaxation.  相似文献   

14.
The influence of the temperature on the mechanical properties of gel-spun hot-drawn ultra-high molecular weight polyethylene fibers has been investigated.From these experiments two different fracture mechanisms could be distinguished. The results indicate that above 20C a stress-induced orthorhombic-hexagonal phase transition is responsible for fiber failure. In the hexagonal or rotator phase the chains can easily slip past one another and fiber fracture is initiated by creep. Below 20C the phase transition cannot be introduced because the stress needed for the phase transition would exceed the covalent-bond strength in the polyethylene chain. The strength temperature data of the low temperature region was treated with Zhurkov's kinetic concept, leading to a bond-fracture activation energy of 160 kj/mol and an activation volume of 0.01 nm3. These values, together with the data from irradiation and shrinkage experiments, indicated that in the low temperature region fiber failure might be initiated by the fracture of trapped entanglements instead of that by overstressed, taut tie molecules.  相似文献   

15.
The stress relaxation and creep behavior of unfilled high density polyethylene (HDPE) and HDPE filled with untreated and surface-treated glass spheres were measured at room temperature. A silane-based coupling agent capable of providing a covalent bond between HDPE and the glass spheres was used for the surface-treatment. Two different amounts of the coupling agent were employed giving silane layers on the fillers with different thicknesses. The effect of ageing time at room temperature on the viscoelastic properties after quenching from 100 °C to room temperature in ice water was also investigated. The effects of the surface treatment of the fillers and the ageing time was characterized by means of the internal stress ( i ) concept. The i -value increased with the degree of interaction of the filler/matrix interface and the ageing time. It was here not possible to superimpose the different flow curves with regard to the ageing time with sufficient accuracy. This is due to the variation of i with ageing time. The surface-treatment of the filler had a marked effect on the creep behavior at high applied stress levels and on the ageing behavior of the composites, presumably due to the formation of an interphase region close to the filler surface with different properties and different ageing characteristics than that of the bulk of the matrix.  相似文献   

16.
Small-angle x-ray scattering (SAXS) was used to determine density fluctuation in radiation-induced crosslinked polyethylene of varying degrees of crystallinity. Density fluctuation FL decreases with increasing crystallinity, while it increases linearly with increasing radiation dose or degree of crosslinking. By means of extrapolation, density fluctuations in the crystalline and the amorphous phasesFL c andFL a were obtained. At a given dose,FL a is greater thanFL c . The increase inFL a with radiation is found to be much greater than that ofFL c compared with the initial values at 0 Mrad,FL c showing only a negligible increase event at 312 Mrad. The present findings suggest that crosslinks are not introduced within the crystalline phase; they take place primarily in the noncrystalline phase, in agreement with the conclusions reached previously on the basis of changes in crystalline and amorphous densities in irradiated polyethylene.Dedicated to Prof. Dr. W. Pechhold on the occasion of his 60th birthday  相似文献   

17.
The kinetics of a nonisothermal crystallization and melting of irradiated with dose of 6 Mrad blends of an ultra-high molecular-weight polyethylene (UHMWPE) and a high-density polyethylene with normal molecular weight (NMWPE) is investigated by means of DSC. The blends have been prepared at temperature below the flow temperature of UHMWPE: The enthalpies of melting of the polyethylenes increase, while those of their blends decrease after irradiation. The enthalpies of crystallization of the pure polyethylenes are higher, while those of their blends almost do not change or are a bit higher after irradiation. The rates of a nonisothermal crystallization and melting of the polyethylenes increase, while those of the polyethylenes in the blends decrease after irradiation. Thermomechanical measurements under constant load in wide-temperature interval of irradiated polyethylenes and their blends have been made. A high-elastic plateau in viscous-liquid state is established on the thermomechanical curves of UHMWPE, and the blends with high content of UHMWPE. On the basis of results obtained assumptions have been made about the processes taking place in the blends under the action of irradiation, as well as about the character of the mutual influence between the components in the process of irradiation.  相似文献   

18.
New equilibrium melting point data, for polyethylene containing chain defects, are tested in the light of random copolymer predictions. A simplified expression for the melting point depression of random copolymers containing small amounts of non-crystallizable units is derived. Non-equilibrium melting data for rapidly quenched polyethylene samples are also reported. The fusion enthalpyH(X), and the surface free energy e for crystals containing defects are evaluated using crystallinity, equilibrium meltingtemperatures and X-ray long period data. It is shown that increasing defect penetration within crystals induces a decrease ofH(X) withX in accordance with theoretical predictions. Finally e is, similarly, shown to decrease with increasing number of chain defects attached to the crystal surface.  相似文献   

19.
The properties of gel-spun polyethylene fibers hot-drawn to the maximum draw ratio depend on the spinning conditions. Different spinning conditions result in two types of structure in the paraffin oil containing fibers: an isotropic lamellar structure or a shish-kebab structure. Meridional SAXS experiments can identify the structure present. After extraction, these structures are still present but can be detected only in a more indirect way by SAXS experiments because of an excessive contribution of void scattering. During hot-drawing both structures are transformed into a more fibrillar structure. The shish-kebab structures can be drawn only to relatively low hot-draw ratios with an incomplete transformation of the lamellar overgrowth into the fibrils, as demonstrated by the presence of a meridional SAXS maximum/shoulder. This leads to relatively weak fibers. Lamellar structures can be drawn to high draw ratios by chain unfolding. A nearly complete transformation of the lamellae into fibrils is obtained and the fibers have excellent properties. The information about the morphology obtained by SAXS, DSC, WAXS, and SEM can be used to establish a relation between morphology and properties.  相似文献   

20.
The melting and the crystallization of-irradiated (doses: 0–6Mrad) ultra-high molecular weight nascent polyethylene (UHMWPE) and high density nascent polyethylene with normal molecular weight (NMWPE) were investigated by DSC. The heat of melting of the nascent UHMWPE (DSC degree of crystallinity, respectively) increases up to a dose of 3 Mrad, after which it slightly decreases. The heat of the second melting of UHMWPE and of the first and second melting of NMWPE increases slightly up to a dose of 3 Mrad, after which it does not change. The X-ray degree of crystallinity of the nascent non-irradiated and irradiated polymers was 0.62±0.02. The calorimetric crystallinity was compared to the X-ray one. The results show that radiation does not affect the polymer crystallinity, but influences the thermodynamic heat of melting. The increase ofH m vs. dose in UHMWPE is explained in terms of processes of tie molecule scission within the amorphous regions and on the surface of the crystals, which predominate over crosslinking up to a dose of 3 Mrad. That leads to an increase in the conformational mobility of the molecules and to an increase in the enthalpy, according to Peterlin's formula. The scission of the chains at the points of entangling of the tie molecules leads to a decrease in the temperature and to an increase in the enthalpy of crystallization of UHMWPE vs. dose. In NMWPE these effects are considerably weaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号