首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 789 毫秒
1.
The 0.1 THz coherent synchrotron radiation (CSR) was successfully generated in the 90° bending magnet of the compact S-band linac with the achromatic arc section using the ultra-short electron bunch which has the energy of 40 MeV, the bunch charge of about 1nc and the bunch length less than 1 ps (rms). The electron bunch compression of 1 nC electron bunch was achieved less than 1 ps (rms) by controlling the Q-magnets in the achromatic arc section as the bunch length was measured by the rms bunch length monitor.  相似文献   

2.
We present the concepts for an electron storage ring dedicated to and optimized for the production of stable coherent synchrotron radiation (CSR) over the far-infrared terahertz wavelength range from 200 μm to about 1 cm. CIRCE (Coherent InfraRed CEnter) will be a 66 m circumference ring located on top of the ALS booster synchrotron shielding tunnel and using the existing ALS injector. This location provides enough floor space for both the CIRCE ring, its required shielding, and numerous beamlines. We briefly outline a model for CSR emission in which a static bunch distortion induced by the synchrotron radiation field is used to significantly extend the stable CSR emission towards higher frequencies. This model has been verified with experimental CSR results. We present the calculated CIRCE photon flux where a gain of 6–9 orders of magnitude is shown compared to existing far-IR sources. Additionally, the particular design of the dipole vacuum chamber has been optimized to allow an excellent transmission of these far-infrared wavelengths. We believe that the CIRCE source can be constructed for a modest cost.  相似文献   

3.
We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission.  相似文献   

4.
We report the first observation of laser seeding of the storage-ring microbunching instability. Above a threshold bunch current, the interaction of the beam and its radiation results in a coherent instability, observed as a series of stochastic bursts of coherent synchrotron radiation (CSR) at terahertz frequencies initiated by fluctuations in the beam density. We have observed that this effect can be seeded by imprinting an initial density modulation on the beam by means of laser "slicing." In such a situation, most of the bursts of CSR become synchronous with the pulses of the modulating laser and their average intensity scales exponentially with the current per bunch. We present detailed experimental observations of the seeding effect and a model of the phenomenon. This seeding mechanism also creates potential applications as a high-power source of CSR at terahertz frequencies.  相似文献   

5.
The time structure of a burst of coherent synchrotron radiation (CSR) emitted from a high-peak-current beam in the electron storage ring NewSUBARU has been investigated. The source of this CSR burst is fine time structure in a bunch produced by longitudinal beam instability. This burst is unstable but very easy to obtain, so it can be used for some experimental applications with appropriate averaging of data. With an averaging period of 10 ms, the fluctuation of the integrated power was about 10%.  相似文献   

6.
Observation of frequency-locked coherent terahertz Smith-Purcell radiation   总被引:2,自引:0,他引:2  
We report the observation of enhanced coherent Smith-Purcell radiation (SPR) at terahertz (THz) frequencies from a train of picosecond bunches of 15 MeV electrons passing above a grating. SPR is more intense than other sources, such as transition radiation, by a factor of Ng, the number of grating periods. For electron bunches that are short compared with the radiation wavelength, coherent emission occurs, enhanced by a factor of Ne, the number of electrons in the bunch. The electron beam consists of a train of Nb bunches, giving an energy density spectrum restricted to harmonics of the 17 GHz bunch train frequency, with an increased energy density at these frequencies by a factor of Nb. We report the first observation of SPR displaying all three of these enhancements, NgNeNb. This powerful SPR THz radiation can be detected with a high signal to noise ratio by a heterodyne receiver.  相似文献   

7.
Measurements of the beam emittance during bunch compression in the CLIC Test Facility (CTF-II) are described. The measurements were made with different beam charges and different energy correlations versus the bunch compressor settings which were varied from no compression through the point of full compression and to overcompression. Significant increases in the beam emittance were observed with the maximum emittance occurring near the point of full (maximal) compression. Finally, evaluation of possible emittance dilution mechanisms indicates that coherent synchrotron radiation was the most likely cause.  相似文献   

8.
在进行束团压缩时,相干同步辐射导致束团能量再分配,这会引入一定类型的非线性,目前普遍认为该非线性会导致束团发射度的急剧增加.本文通过模拟计算发现该结论只在一定条件下成立,同时还发现相干同步辐射引入固定类型的非线性,在特定参数下,该非线性能在一定程度上抵消束团原有的非线性,最终可能对束团品质有改善作用.  相似文献   

9.
When an electron bunch is compressed in a chicane compressor, the CSR (coherent synchrotron radiation) will induce energy redistribution along the bunch. Such energy redistribution will affect the longitudinal emittance as a direct consequence. It will also excite betatron oscillation due to the chromatic transfer functions, and hence a transverse emittance change. So, it is indispensable for us to find a way to alleviate the CSR-caused emittance dilution and the bad result of chicane compressor in PKU-FEL.  相似文献   

10.
When an electron bunch is compressed in a chicane compressor,the CSR (coherent synchrotron radiation) will induce energy redistribution along the bunch.Such energy redistribution will affect the longitudinal emittance as a direct consequence.It will also excite betatron oscillation due to the chromatic transfer functions,and hence a transverse emittance change.So,it is indispensable for us to find a way to alleviate the CSR-cansed emittance dilution and the bad result of chicane compressor in PKU-FEL.  相似文献   

11.
A new technology for generating steady state, brilliant, broadband, coherent, far-infrared (FIR) radiation in electron storage rings is presented, suitable for FIR spectroscopy. An FIR power increase of up to 100 000 compared to the normal, incoherent synchrotron radiation in the range of approximately 5 to approximately 40 cm(-1) could be achieved. The source is up to 1000 times more brillant compared to a standard Hg arc lamp. The coherent synchrotron radiation is produced in a "low alpha" optics mode of the synchrotron light source BESSY, by bunch shortening and non-Gaussian bunch deformation.  相似文献   

12.
Bursts of coherent synchrotron radiation at far-infrared and millimeter wavelengths have been observed at several storage rings. A microbunching instability has been proposed as the source for the bursts. However, the microbunching mechanism has yet to be elucidated. We provide the first evidence that the bursts are due to a microbunching instability driven by the emission of synchrotron radiation in the bunch. Observations made at the Advanced Light Source are consistent with the values predicted by the proposed microbunching model. These results demonstrate a new instability regime for high energy synchrotron radiation sources and could impact the design of future sources.  相似文献   

13.
In this paper, the enhanced terahertz radiation transformed from surface plasmon polaritons, excited by a uniformly moving electron bunch, in a structure consisting of a monolayer graphene supported on a dielectric grating with arbitrary profile is investigated. The results show that the grating profile has significant influence on the dispersion curves and radiation characteristics including radiation frequency and intensity. The dependence of dispersion and radiation characteristics on the grating shape for both the symmetric and asymmetric gratings is studied in detail. Moreover, we find that, for an asymmetric grating with certain profile, there exist two different diffraction types, and one of the two types can provide higher radiation intensity comparing to the other one. These results will definitely facilitate the practical application in developing a room-temperature, tunable, coherent and miniature terahertz radiation source.  相似文献   

14.
We have demonstrated the idea of circulating a short, intense linac bunch for some tens of turns in an isochronous ring. We compressed a bunch from the SPring-8 linac to a few picoseconds rms by means of an energy compression system and a beam transport line from the linac to NewSUBARU. The NewSUBARU storage ring was set to a quasi-isochronous condition and the bunch circulated for about 50 turns after injection while maintaining the short bunch length. At the same time, a pulse train of strong coherent synchrotron oscillation from the short bunch was observed.  相似文献   

15.
Light sources based on accelerators aim at producing very high brilliance coherent radiation, tuneable from the infrared to X-ray range, with picosecond or femtosecond light pulses.The first synchrotron light sources were built around storage rings in which a large number of relativistic electrons produce “synchrotron radiation” when their trajectory is subjected to a magnetic field, either in bending magnets or in specific insertion devices (undulators), made of an alternating series of magnets, allowing the number of curvatures to be increased and the radiation to be reinforced.These “synchrotron radiation” storage rings are now used worldwide (there are more than thirty), and they simultaneously distribute their radiation to several tens of users around the storage ring.The most effective installations in term of brilliance are the so-called 3rd generation synchrotron radiation light sources. The radiation produced presents pulse durations of the order of a few tens of ps, at a high rate (of the order of MHz); it is tuneable over a large range, depending on the magnetic field and the electron beam energy and its polarisation is adjustable (in the VUV-soft-X range). Generally, a very precise spectral selection is made by the users with a monochromator.The single pass linear accelerators can produce very short electron bunches (). The beam of very high electronic density is sent into successive undulator modules, reinforcing the radiation's longitudinal coherence, produced according to a Free Electron Laser (FEL) scheme by the interaction between the electron bunch and a light wave. The very high peak brilliance justifies their designation as 4th generation sources. The number of users is smaller because an electron pulse produces a radiation burst towards only one beamline. Energy Recovery Linacs (ERL) let the beam pass several times in the accelerator structures either to recover the energy or to accelerate the electrons during several turns, and thus provide subpicosecond beams for a greater number of users.A state-of-the-art of X sources using conventional (and not laser plasma based) accelerators is given here, underlying the performance already reached or forecast and the essential challenges. To cite this article: M.-E. Couprie, J.-M. Filhol, C. R. Physique 9 (2008).  相似文献   

16.
《Physics letters. A》1998,239(6):373-377
It is suggested that it is possible to define an equivalent electric charge for an intense laser pulse (which can be described as a photon bunch) propagating in a plasma. It is also shown that this equivalent charge can be a source of new radiation processes in an inhomogeneous plasma. The results are extended to the case of a neutrino bunch, which is coupled to the plasma by weak nuclear forces.  相似文献   

17.
Transition radiation appearing when a charged particle crosses the interface between two media with different dielectric constants, e.g., a metal–vacuum interface, has been well studied in a wide spectral range. However, primarily, radiation from smooth interfaces has been studied. Transition radiation from conducting gratings (grating transition radiation) is experimentally studied and theoretically analyzed in this work. In this case, it is possible to obtain monochromatic radiation with a tunable frequency depending on the rotation angle of the grating with respect to the electron momentum. Coherent grating transition radiation can be efficiently used as a source of terahertz radiation based on the use of a compact electron accelerator with an energy below 10 MeV and a bunch duration of ≤1 ps.  相似文献   

18.
The Compact Light Source is a miniature synchrotron producing X‐rays at the interaction point of a counter‐propagating laser pulse and electron bunch through the process of inverse Compton scattering. The small transverse size of the luminous region yields a highly coherent beam with an angular divergence of a few milliradians. The intrinsic monochromaticity and coherence of the produced X‐rays can be exploited in high‐sensitivity differential phase‐contrast imaging with a grating‐based interferometer. Here, the first multimodal X‐ray imaging experiments at the Compact Light Source at a clinically compatible X‐ray energy of 21 keV are reported. Dose‐compatible measurements of a mammography phantom clearly demonstrate an increase in contrast attainable through differential phase and dark‐field imaging over conventional attenuation‐based projections.  相似文献   

19.
中国工程物理研究院计划开展XFEL光源的研制,主要通过电子束在波荡器中的辐射特性产生硬X射线。根据理论分析和数值模拟,在电子束最高能量可达12GeV的实际条件下,初步设计了一条间隙可调的真空外波荡器束线,波荡器分为25段,每段长3.86m,间隙7~10mm,周期长度25.4mm,磁场0.636~1.03T,束线总长120m左右,辐射光子能量为3~25keV。  相似文献   

20.
颜立新  刘卓辕 《强激光与粒子束》2022,34(10):104012-1-104012-16
太赫兹辐射在基础科学和产业应用中具有重要的应用前景,但传统的电子学和光学方法难以在1~10 THz产生相干的高功率、窄带且连续可调的太赫兹辐射。基于相对论性超短电子束和预调制电子束序列的加速器太赫兹源将能在上述范围内产生可调的高能谱强度窄带太赫兹辐射。综述了清华大学加速器实验室近年来在基于相对论电子束的加速器太赫兹源方面的理论和实验进展,以及与加速器太赫兹源一起发展起来的太赫兹辐射测量、束流诊断和先进加速技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号