首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yttrium oxysulfide upconverting phosphor nanoparticles, doped with Yb as a sensitizer and Er (or Ho, Tm) as an activator, have been prepared via a solid-gas reaction using precursor oxalate particles obtained in an emulsion liquid membrane (ELM, water-in-oil-in-water (W/O/W) emulsion) system. The resulting Y(2)O(2)S:Yb,Er particles, mainly smaller than 50 nm in diameter, demonstrated green upconversion emission under infrared excitation (lambdaex = 980 nm) via a two-photon process. Distinct green and blue upconversion emission were also demonstrated under the same infrared excitation from Y(2)O(2)S:Yb,Ho and Y(2)O(2)S:Yb,Tm nanoparticles, respectively. These upconverting phosphor nanoparticles, together with Y(2)O(3):Yb,Er infrared-to-red upconverting phosphor particles, with different emission under the same infrared excitation may be applied to the luminescent reporter materials for the detection of the targeted analyte in multiplexed assays.  相似文献   

2.
Size- (submicrometer-sized) and morphology- (spherical) controlled composite Gd-Eu oxalate particles were prepared in an emulsion liquid membrane (water-in-oil-in-water emulsion) system. The oxalate particles thus prepared were calcined in air to obtain Gd(2)O(3) : Eu(3+) phosphor particles and in sulfur atmosphere to obtain Gd(2)O(2)S : Eu(3+) phosphor particles. These submicrometer-sized spherical phosphor particles showed photoluminescence properties with emission peak at 614 nm for Gd(2)O(3) : Eu(3+) and 628 nm for Gd(2)O(2)S : Eu(3+).  相似文献   

3.
Sr(2)CeO(4) and Sr(2)CeO(4):Eu(3+),Dy(3+) phosphor particles and thin films were prepared by using an emulsion liquid membrane (ELM, water-in-oil-in-water (W/O/W) emulsion) system, containing VA-10 (2-methyl-2-ethylheptanoic acid) as extractant (cation carrier). A two-step extraction enabled efficient extraction for Sr(3+) and rare earth ions, and the resulting precursor metal oxalate particles produced in the internal water phase of the ELM system were about 60 nm in diameter. Calcination of the oxalate particles in air gave submicrometer-sized Sr(2)CeO(4) and Sr(2)CeO(4):Eu(3+),Dy(3+) particles, which showed blue and white luminescence, respectively, by UV excitation. Blue and white luminescence phosphor thin films were also prepared by soaking alumina substrates into the W/O emulsion containing precursor oxalate particles, followed by calcination in air.  相似文献   

4.
Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare‐earth acetates. All particles consist of a core of NaYF4:Yb,Er, doped with 18 % Yb3+ and 2 % Er3+, and an inert shell of NaYF4, with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm?2) and by approximately a factor of 10 at low power densities (1 W cm?2).  相似文献   

5.
In this paper, the upconversion luminescent properties of Gd2O3:Er3+,Yb3+ nanowires as a function of Yb concentration and excitation power were studied under 978-nm excitation. The results indicated that the relative intensity of the red emission (4F(9/2)-4I(15/2)) increased with increasing the Yb3+ concentration, while that of the green emission (4S(3/2)/2H(11/2)-4I(15/2)) decreased. As a function of excitation power in ln-ln plot, the green emission of 4S(3/2)-4I(15/2) yielded a slope of approximately 2, while the red emission of 4F(9/2)-4I(15/2) yielded a slope of approximately 1. Moreover, the slope decreased with increasing the Yb3+ concentration. This was well explained by the expanded theory of competition between linear decay and upconversion processes for the depletion of the intermediate excited states. As the excitation power density was high enough, the emission intensity of upconversion decreased due to thermal quenching. The thermal effect caused by the exposure of the 978-nm laser was studied according to the intensity ratio of 2H(11/2)-4I(15/2) to 4S(3/2)-4I(15/2). The practical sample temperature at the exposed spot as a function of excitation power and Yb3+ concentration was deduced. The result indicated that at the irradiated spot (0.5 x 0.5 mm2) the practical temperature considerably increased.  相似文献   

6.
Hollow La(2)O(3):Ln (Ln = Yb/Er, Yb/Ho) microspheres with up-conversion (UC) luminescence properties were successfully synthesized via a facile sacrificial template method by employing carbon spheres as hard templates followed by a subsequent heating process. The structure, morphology, formation process, and fluorescent properties are well investigated by various techniques. The results indicate that the hollow La(2)O(3):Ln microspheres can be well indexed to the hexagonal La(2)O(3) phase. The hollow La(2)O(3):Ln microspheres with uniform diameter of about 270 nm maintain the spherical morphology and good dispersion of the carbon spheres template. The shell of the hollow microspheres consists of numerous nanocrystals with the thickness of approximately 40 nm. Moreover, the possible formation mechanism of evolution from the carbon spheres to the amorphous precursor and to the final hollow La(2)O(3):Ln microspheres has also been proposed. The Yb/Er and Yb/Ho codoped La(2)O(3) hollow spheres exhibit bright up-conversion luminescence with different colors derived from different activators under the 980 nm NIR laser excitation. Furthermore, the doping concentration of the Yb(3+) is optimized under fixed concentration of Er(3+)/Ho(3+). This material may find potential applications in drug delivery, hydrogen and Li ion storage, and luminescent displays based on the uniform hollow structure, dimension, and UC luminescence properties.  相似文献   

7.
Multicolor Lu(2)O(3):Ln (Ln=Eu(3+), Tb(3+), Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) nanocrystals (NCs) with uniform spherical morphology were prepared through a facile urea-assisted homogeneous precipitation method followed by a subsequent calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrum (EDS), Fourier transformed infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), and photoluminescence (PL) spectra as well as kinetic decays were employed to characterize these samples. The XRD results reveal that the as-prepared nanospheres can be well indexed to cubic Lu(2)O(3) phase with high purity. The SEM images show the obtained Lu(2)O(3):Ln samples consist of regular nanospheres with the mean diameter of 95 nm. And the possible formation mechanism is also proposed. Upon ultraviolet (UV) excitation, Lu(2)O(3):Ln (Ln=Eu(3+) and Tb(3+)) NCs exhibit bright red (Eu(3+), (5)D(0)→(7)F(2)), and green (Tb(3+), (5)D(4)→(7)F(5)) down-conversion (DC) emissions. Under 980 nm NIR irradiation, Lu(2)O(3):Ln (Ln=Yb(3+)/Er(3+), Yb(3+)/Tm(3+), and Yb(3+)/Ho(3+)) NCs display the typical up-conversion (UC) emissions of green (Er(3+), (4)S(3/2),(2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow-green (Ho(3+), (5)F(4), (5)S(2)→(5)I(8)), respectively.  相似文献   

8.
The cold isostatic press pretreatment process was adopted to prepare fine rare earth oxysulfide up-conversion phosphors with spherical shape, narrow size distribution and high luminescence efficiency. The upconversion optical characteristics and brightness of the blue (Y2O2SYb,Tm), green (Y2O2S: Yb,Er), red (Y2O3Yb,Er) emitter were also investigated, and a novel method was successfully developed for the brightness measurement of upconversion luminescence (UPL). It is shown that a white color can be obtained by the appropriate mixture of these primary blue, green and red emissions components. The Er3 ions exhibit different upconversion mechanism in Y2O2S and Y2O3 host materials. The rare earth oxysulfide is an efficient upconversion matrix. The UPL brightness of Y2O2S: Yb,Er is 6.5 times higher than that of Y2O3: Yb,Er, and Y2O2S: Yb,Er shows UPL brightness of 1100 cd/m2 under 5.56 W/cm2 power density using a 980 nm laser diode.  相似文献   

9.
The new Er3+/Yb3+ co-doped 70TeO2-5Li2O-(25-x)B2O3-xGeO2 (x = 0, 5, 10, 15 fand 20 mol.%) glasses were prepared. The thermal stability, absorption spectra, emission spectra and lifetime of the 4I(13/2) level of Er3+ ions were measured and studied. The FT-IR spectra were carried out in order to investigate the structure of local arrangements in glasses. It is found that the thermal stability, absorption cross-section of Yb3+, emission intensity and lifetime of the 4I(13/2) level of Er3+ increase with increasing GeO2 content in the glass composition, while the fluorescence width at half maximum (FWHM) at 1.5 um of Er3+ is about 70 nm. The obtained data suggest that this system glass can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

10.
Y2O3 nanoparticulate thin films have been prepared using an emulsion liquid membrane (water-in-oil-in-water (W/O/W) emulsion) system, consisting of Span 83 (sorbitan sesquioleate) as a surfactant and VA-10 (2-methyl-2-ethylheptanoic acid) as an extractant (cation carrier). Yttrium ions were extracted from the external water phase and stripped into the internal water phase to make precursor oxalate nanoparticles. Y2O3 nanoparticulate thin film was prepared by casting the W/O emulsion, separated from the external phase and containing the Y oxalate nanoparticles, on a Si substrate, followed by calcination in air. Well-arranged thin-layer nanoparticulate film, consisting of Y2O3 nanoparticles smaller than 20 nm, was obtained via spin coating of the W/O emulsion. A multilayer nanoparticulate thin film was also fabricated via a simple procedure of repeated coating and subsequent calcination.  相似文献   

11.
The novel Er(3+) single-doped and Er(3+)/Yb(3+) co-doped tellurite glasses were prepared. The effect of Yb(2)O(3) concentration on absorption spectra, emission spectra and upconversion spectra of glasses were measured and investigated. The emission intensity, fluorescence full width at half maximum (FWHM) and upconversion luminescence of Er(3+) go up with the increasing concentration of Yb(3+) ions. The maximum FWHM of (4)I(13/2) --> (4)I(15/2) transition of Er(3+) is approximate 77 nm for 1.41 x 10(21)ions/cm(3) concentration of Yb(3+)-doped glass. The visible upconversion emissions at about 532, 546 and 659 nm, corresponding to the (2)H(11/2) --> (4)I(15/2), (4)S(3/2) --> (4)I(15/2) and (4)F(9/2) --> (4)I(15/2) transitions of Er(3+), respectively, were simultaneously observed under the excitation at 970 nm. Subsequently, the possible upconversion mechanisms and important role of Yb(3+) on the green and red emissions were discussed and compared. The results demonstrate that this kind of tellurite glass may be a potentially useful material for developing potential amplifiers and upconversion optical devices.  相似文献   

12.
采用微波法和溶胶-凝胶法制备了(Y2O3:Er3+)粒子. 微波法制备过程中烧结温度降低到600 ℃. 980 nm激光激发下得到550 和660 nm两个上转换发射带. 微波法制备的上转换材料得到了强的红光发射和弱的绿光发射, 溶胶-凝胶法制备的材料得到了强的绿色发射和弱的红光发射. 结果表明, 微波促进了S6对称性的形成, S6对称性促进了红光的发射.  相似文献   

13.
采用溶剂热法制备了不同Mn~(2+)掺杂量的NaBiF_4∶Yb/Er/Mn上转换发光体系,研究了其形貌、晶相、上转换发光性能随Mn~(2+)掺杂量的变化,并探讨了该体系的能量传递机理.实验结果表明,Mn~(2+)的掺杂不会引起NaBiF_4从六方相转变为立方相,但会增大其尺寸;同时在NaBiF_4体系中,Mn~(2+)可以与Er~(3+)进行能量传递,使红光发射得到增强,并且随着Mn~(2+)浓度的增加,红/绿光发射强度比也会随之增大.此外,还考察了NaBiF_4∶Yb/Er/Mn体系的变温发射光谱,发现当温度升高时,红/绿光强度比以及520 nm绿光与540 nm绿光发射强度比都总体上呈增大趋势.  相似文献   

14.
Just O  Rees WS 《Inorganic chemistry》2001,40(8):1751-1755
Anhydrous lanthanide(III) chlorides (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) react with 3 equiv of lithium 2,2,5,5-tetramethyl-2,5-disila-1-azacyclopentanide, Li[N[Si(CH3)2CH2Ch2Si(CH3)2]], in THF or Et(2)O to afford the monomeric four-coordinate heteroleptic ate complexes Ln[N[Si(CH3)2CH2CH2Si(CH3)2]]3(mu-Cl)Li(THF/Et2O)3 (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6), Er (7), Tm (8), Yb (9)), whose solid-state structures were determined by the single-crystal X-ray diffraction technique. All complexes additionally were characterized by melting point determination, elemental analyses, and mass spectrometry.  相似文献   

15.
A series of novel Er3+/Yb3+ co-doped 75TeO2-(25-x)Nb2O5-xWO3 (TNW: x=0, 3, 6, 9, 12, and 15 mol%) glasses have been prepared. Effect of WO3 on the thermal stability and spectroscopic properties of Er3+/Yb3+ co-doped niobic tellurite glasses have been investigated. With WO3 content increasing from 0 to 15 mol%, the fluorescence full width at half maximum (FWHM), the peak of stimulated emission cross-section (sigmaepeak), the measured lifetime (taum), and quantum efficiency (eta) change from 71 nm, 8.47x10(-21) cm2, 2.86 ms, 84.1% to 76 nm, 7.22x10(-21) cm2, 3.14 ms, 88.9%, respectively. The FWHM and sigmaepeak of Er3+ ions in different glass hosts were compared; the obtained data reveals that this new TNW4 glass may be a potentially useful candidate material host for broadband amplifiers.  相似文献   

16.
Er3+/Yb3+ co-doped TeO2-B2O3-Nb2O5-ZnO (TBN) glasses were prepared. The absorption spectra and upconversion luminescence spectra of TBN glasses were measured and analyzed. The upconversion emission bands centered at 530, 546 and 658 nm were observed under the excitation at 975 nm, corresponding to the transitions of 2H11/2-->4I15/2, 4S3/2-->4I15/2 and 4F9/2-->4I15/2 respectively. The ratio of red emission to green emission increases with an increasing of Yb3+ ions concentration. According to the quadratic dependence on excitation power, the possible upconversion mechanisms and processes were discussed.  相似文献   

17.
The Er3+/Yb3+-codoped 70TeO2-5Li2O-10B2O3-15GeO2 glass was prepared. The thermal stability, absorption spectra, emission spectra and up-conversion spectra were measured and investigated. The Judd-Ofelt analysis based on absorption spectra was performed in order to determine the Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), spontaneous emission probability, radiative lifetime and branching ratios of several Er3+ transitions. It was found that this studied glass has good thermal stability, broad fluorescence full width at half maximum (FWHM), large stimulated emission cross-section and strong up-conversion emissions at about 532, 546 and 659 nm, corresponding to the 2H(11/2)-->4I(15/2), 4S(3/2)-->4I(15/2) and 4F(9/2)-->4I(15/2) transitions of Er3+, respectively under the excitation at 970 nm. The results suggest that this Er3+/Yb3+-codoped germano-tellurite glass may be a potentially useful material for developing potential amplifiers and up-conversion optical devices.  相似文献   

18.
用低温溶剂热法以乙二醇为溶剂合成了Er3+和Yb3+共掺的In2O3纳米晶。用X射线衍射(XRD)、透射电镜(TEM)、漫反射光谱和上转换发光光谱对样品进行了分析。XRD和TEM结果表明,产物为纯的立方相In2O3结构,粒径约为30 nm;漫反射光谱显示了In2O3∶Er3+,Yb3+纳米晶在522、653和975 nm附近有3个吸收带;在980 nm近红外光激发下,样品发射出中心波长为525及555 nm的绿光和662 nm的红光,分别对应于Er3+的2H11/2→4I15/2、4S3/2→4I15/2和4F9/2→4I15/2跃迁;研究了Er3+和Yb3+离子的不同掺杂浓度对发光强度的影响,确定了Yb3+和Er3+离子的最佳掺杂浓度均为3%;双对数曲线显示绿光和红光的发射过程均为双光子吸收过程,对样品的上转换发光机制进行了初步讨论。  相似文献   

19.
The direct reaction of lanthanoid metals with 3,5-diphenylpyrazole (Ph2pzH) at 300 degrees C under vacuum in the presence of mercury gives the structurally characterized [Ln3(Ph2pz)9] (Ln = La or Nd), [Ln2(Ph2pz)6] (Ln = Er or Lu). Similar reactions provided heteroleptic [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er and Y). The last was obtained only from impure Ph2pzH, but was subsequently prepared by treatment of [Yb(Ph2pz)3(thf)2] with Ph2pzH. Reactions of Yb with Ph2pzH at 200 degrees C gave a poorly soluble divalent species which was converted by 1,2-dimethoxyethane into [Yb(Ph2pz)2(dme)2]. Single crystal X-ray structures established a bowed trinuclear pyrazolate-bridged structure for [Ln3(Ph2pz)9] (Ln = La or Nd), Ln...Ln...Ln being 135.94(1) degrees (La) and 137.41(1) degrees(Nd). There are two eta2-Ph2pz ligands on the terminal Ln atoms and one on the central metal with adjacent Ln atoms linked by one mu-eta2:eta2 and one mu-eta5 (to terminal Ln):eta2 pyrazolate group. Thus the terminal Ln atoms are formally nine-coordinate and the central Ln, ten-coordinate. By contrast, [Ln2(Ph2pz)6] (Ln = Er or Lu) complexes are dimeric with two terminal (eta2) and two bridging (mu-eta2:eta2) pyrazolates and eight-coordinate lanthanoids. All six heteroleptic complexes [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er or Yb) are isomorphous with three equatorial eta2-Ph2pz groups, transoid(N-Ln-N 158.18(6)-161.43(9) degrees) eta1-pyrazole ligands, and eight-coordinate Ln throughout.  相似文献   

20.
Different kinds of highly ordered patterns of NaYF(4):Yb,Er nanoparticles on gold substrates were fabricated using a simple method combining micro-contact printing and "breath figures" techniques. Ordered arrays of water droplets were first formed in the hydrophilic regions of patterned self-assembled monolayers (SAMs). This was subsequently submerged in a chloroform solution of NaYF(4):Yb,Er nanoparticles. The particles were spontaneously assembled at the interface of chloroform/water droplet surface, leading to different kinds of uniform patterns after solvent evaporation. The structures of NaYF(4):Yb,Er particles patterns depended on the dimension of the substrate, the concentration of the NaYF(4):Yb,Er nanoparticles and the water condensation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号