首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The synthesis, structural characterization, spectroscopic, and electrochemical properties of N(2)S(2)-ligated Ni(II) complexes, (N,N'-bis(2-mercaptoethyl)-1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), and (N,N'-bis(2-mercapto-2-methylpropane)1,5-diazacyclooctane)nickel(II), (bme-daco)Ni(II), derivatized at S with alcohol-containing alkyl functionalities, are described. Reaction of (bme-daco)Ni(II) with 2-iodoethanol afforded isomers, (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-O,N,N',S,S')halonickel(II) iodide (halo = chloro or iodo), 1, and (N,N'-bis(5-hydroxy-3-thiapentyl)-1,5-diazacyclooctane-N,N',S,S')nickel(II) iodide, 2, which differ in the utilization of binding sites in a potentially hexadentate N(2)S(2)O(2) ligand. Blue complex 1 contains nickel in an octahedral environment of N(2)S(2)OX donors; X is best modeled as Cl. It crystallizes in the monoclinic space group P2(1)/n with a = 12.580(6) ?, b = 12.291(6) ?, c = 13.090(7) ?, beta = 97.36(4) degrees, and Z = 4. In contrast, red complex 2 binds only the N(2)S(2) donor set forming a square planar nickel complex, leaving both -CH(2)CH(2)OH arms dangling; the iodide ions serve strictly as counterions. 2 crystallizes in the orthorhombic space group Pca2(1) with a = 15.822(2) ?, b = 13.171(2) ?, c = 10.0390(10) ?, and Z = 4. Reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol affords another octahedral Ni species with a N(2)S(2)OBr donor set, ((5-hydroxy-3,7-dithianonadiyl)-1,5-diazacyclooctane-O,N,N',S,S')bromonickel(II) bromide, 3. Complex 3 crystallizes in the orthorhombic space group Pca2(1) with a = 15.202(5) ?, b = 7.735(2) ?, c = 15.443(4) ?, and Z = 4. Complex 4.2CH(3)CN was synthesized from the reaction of (bme-daco)Ni(II) with 1,3-dibromo-2-propanol. It crystallizes in the monoclinic space group P2/c with a = 20.348(5) ?, b = 6.5120(1) ?, c = 20.548(5) ?, and Z = 4.  相似文献   

2.
Monosulfonyl derivatives of simple 1,2- and 1,3-diamines (R2HN-R-NHSO2R1 = L) have been shown to be easily deprotonated to give neutral 2:1 complexes, [M(L - H)(2)], with Co(II), Ni(II), Cu(II) or Zn(II). The Ni(II) and Cu(II) complexes with deprotonated N-tosyl-1,2-diaminoethane have a planar N4(2-) donor set and a 14-membered pseudo-macrocyclic structure based on head-to-tail S=O...H-N((amine)) bonding between the two bidentate ligands. In the related tetrahedral Zn(II) complex the ends of the mutually perpendicular bidentate N2- units are too far apart to form a cyclic H-bonded system. X-Ray structure determinations on five free ligands provide evidence for extensive inter-molecular H-bonding, which in the case of N-tosyl-1,3-diaminopropane and its N'-tert-butyl derivative involves formation of dimeric 16-membered pseudo-macrocycles. Despite favourable inter-ligand H-bonding in the neutral 2:1 complexes, these ligands are relatively weak extractants, showing >50% loading of Cu(II) in "pH-swing" equilibria, 2L(org)+ M2+ = [M(L - H)2](org)+ 2 H+, only when the pH of the aqueous phase is raised above 4.  相似文献   

3.
Cu(II) and Ni(II) complexes of the general type [M(N2O2)] are described. The N2O2 ligands used are [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,3-diamine] (HOMeSalpn) and [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,2-diamine (HOMeSalpr). These complexes have been characterized by IR, UV-vis, CV, TG-DTA and 1H NMR spectroscopy. The electrochemical behavior of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to Cu(II)-Cu(I) and Ni(II)-Ni(I) is electrochemically irreversible. The new copper complexes have been applied for the preparation of copper nanoparticles using non-ionic surfactant (Triton X-100) by thermal reduction. The copper nanoparticles with average size of 48nm were formed by thermal reduction of [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,3-diamine]copper(II) in the presence of triphenylphosphine thus releasing the reduced copper and affording the high-purity copper nanoparticles.  相似文献   

4.
The chemical reactions of a family of tetradentate pyridyl/imine ligands, L1, L2, and L3 (L1=[ N, N'-bis(2-pyridinylmethylene)]ethane-1,2-diamine; L2=[ N, N'-bis(pyridin-2-yl)benzylidene]ethane-1,2-diamine; L3=[ N, N'-bis(2-pyridinylmethylene)]propane-1,3-diamine), with Ni (II) in the presence of various pseudohalides (N3(-), SCN(-), and NCO(-)) have served to prepare six different complexes, [Ni 2(L1)2(N3)2](ClO4)2.H2O (1), [Ni 2(L2)2(N3)2](ClO4)2 (2), [Ni2(L2)2(NCS)4] (3), [Ni2(L2)2(NCO) 2](ClO4)2 (4), [Ni2(L3)2(NCO)2](ClO4)2 (5), and [Ni(L3)(N 3)2] (6), which have been characterized by X-ray crystallography. Interestingly, four of these complexes are dinuclear and exhibit end-on (EO) pseudohalide bridges (1, 2, 4, and 5), one is dinuclear and bridged exclusively by the tetradentate ligand (3), and one is mononuclear (6). The bulk magnetization of the complexes bridged by EO pseudohalides has been studied, revealing these ligands to mediate ferromagnetic coupling between the Ni(II) ions, with modeled coupling constants, J, of +31.62 (1), +28.42 (2), +2.81 (4), and +1.72 (5) cm(-1) (where the convention H=-2JS1S2 was used). The striking difference in the coupling intensity between N3(-) and NCO(-) has prompted an investigation by means of density functional theory calculations, which has confirmed the experimental results and provided insight into the reasons for this observation.  相似文献   

5.
Numerous reports describe the photoluminescence of two- and three-coordinate gold(I)-phosphine complexes, but emission in their analogous four-coordinate complexes is almost unknown. This work examines the luminescence of tetrahedral gold(I) complexes of the types [Au(diphos)(2)]PF(6) (diphos = 1,2-bis(diphenylphosphino)ethane, 1) and [Au(2)(tetraphos)(2)](PF(6))(2) (tetraphos = (R,R)-(+/-)/(R,S)-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane, (R,R)-(+/-)/(R,S)-2). Although nonemitting in solution, these complexes luminesce with an intense yellow color (lambda(max) 580-620 nm) at 293 K in the solid state or when immobilized as molecular dispersions within solid matrixes. The excited-state lifetimes of the emissions (tau 4.1-9.4 micros) are markedly dependent on the inter- and intramolecular phenyl-phenyl pairing interactions present. At 77 K in an ethanol glass, two transitions are observed: a minor emission at lambda(max) 415-450 nm and a major emission at lambda(max) 520-595 nm. For [Au(1)(2)]PF(6), lifetimes of tau 251.0 +/- 20.5 micros were determined for the former transition and tau 14.9 +/- 4.6 micros for the latter. Density functional theory (DFT) calculations and comparative studies indicate that the former of these emissions involves triplet LMCT pi(Ph) --> Au(d)-P(p) transitions associated with individual P-phenyl groups. The latter emissions, which are the only ones observed at 293 K, are assigned to LMCT pi(Ph-Ph) --> Au(d)-P(p) transitions associated with excited P-phenyl dimers. Other tetrahedral gold(I)-phosphine complexes containing paired P-Ph substituents display similar emissions. The corresponding phosphine ligands, whether free, protonated, or bound to Ag(I), do not exhibit comparable emissions. Far from being rare, luminescence in four-coordinate Au(I)-phosphine complexes appears to be general when stacked P-phenyl groups are present.  相似文献   

6.
The synthesis of the spiroacetal-containing anti-Helicobacter pylori agents (3S,2'S,5'S,7'S)- (ent-CJ-12,954) and (3S,2'S,5'R,7'S)- (ent-CJ-13,014) has been carried out based on the convergent union of a 1:1 mixture of heterocycle-activated spiroacetal sulfones and with (3S)-phthalide aldehyde . The synthesis of the (3R)-diastereomers (3R,2'S,5'S,7'S)- and (3R,2'S,5'R,7'S)- was also undertaken in a similar manner by union of (3R)-phthalide aldehyde with a 1:1 mixture of spiroacetal sulfones and . Comparison of the (1)H and (13)C NMR data, optical rotations and HPLC retention times of the synthetic compounds (3S,2'S,5'S,7'S)- and (3S,2'S,5'R,7'S)- and the (3R)-diastereomers (3R,2'S,5'S,7'S)- and (3R,2'S,5'R,7'S)-, with the naturally occurring compounds, established that the synthetic isomers and were in fact enantiomeric to the natural products CJ-12,954 and CJ-13,014. The (2S,8S)-stereochemistry in protected dihydroxyketone , the precursor to the mixture of spiroacetal sulfones and was established via union of readily available (S)-acetylene with aldehyde in which the (4S)-stereochemistry was established via asymmetric allylation. Deprotection and cyclization of protected dihydroxyketone afforded an inseparable 1:1 mixture of spiroacetal alcohols and that were converted into a 1:1 inseparable mixture of spiroacetal sulfones and . Phthalide-aldehyde was prepared via intramolecular acylation of bromocarbamate in which the (3S)-stereochemistry was established via asymmetric CBS reduction of ketone .  相似文献   

7.
Gao EQ  Tang JK  Liao DZ  Jiang ZH  Yan SP  Wang GL 《Inorganic chemistry》2001,40(13):3134-3140
Four oxamato-bridged heterotrinuclear Ni(II)Cu(II)Ni(II) complexes of formula ([Ni(bispictn)](2)Cu(pba))(ClO(4))(2).2.5H(2)O (1), ([Ni(bispictn)](2)Cu(pbaOH))(ClO(4))(2).H(2)O (2), ([Ni(cth)](2)Cu(pba))(ClO(4))(2) (3), and ([Ni(cth)](2)Cu(opba))(ClO(4))(2).H(2)O (4) and a binuclear Ni(II)Cu(II) complex of formula [Cu(opba)Ni(cth)].CH(3)OH (5) have been synthesized and characterized by means of elemental analysis, IR, ESR, and electronic spectra, where pba = 1,3-propylenebis(oxamato), pbaOH = 2-hydroxyl-1,3-propylenebis(oxamato), opba = o-phenylenebis(oxamato), bispictn = N,N'-bis(2-pyridylmethyl)-1,3-propanediamine, and cth = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The crystal structures of 1, 3, and 5 have been determined. The structures of complexes 1 and 3 consist of trinuclear cations and perchlorate anions, and that of 5 consists of neutral binuclear molecules which are connected by hydrogen bonds and pi-pi interactions to produce a unique supramolecular "double" sheet. In the three complexes, the copper atom in a square-planar or axially elongated octahedral environment and the nickel atom in a distorted octahedral environment are bridged by the oxamato groups, with Cu.Ni separations between 5.29 and 5.33 A. The magnetic properties of all five complexes have been investigated. The chi(M)T versus T plots for 1-4 exhibit the minimum characteristic of antiferromagnetically coupled NiCuNi species with an irregular spin state structure and a spin-quartet ground state. The chi(M)T versus T plot for 5 is typical of an antiferromagnetically coupled NiCu pair with a spin-doublet ground state. The Ni(II)-Cu(II) isotropic interaction parameters for the five complexes were evaluated and are between 102 and 108 cm(-)(1) (H = -JS(Cu).S(Ni)).  相似文献   

8.
The neutral and one-electron oxidized group 10 metal, Ni(II), Pd(II) and Pt(II), six-membered chelate Salpn (Salpn = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,3-propanediamine) complexes have been investigated and compared to the five-membered chelate Salen (N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethanediamine) and Salcn (N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-(1R,2R)-diamine) complexes. Reaction of the Salpn complexes with 1 equivalent of AgSbF(6) affords the oxidized complexes which exist as ligand radical species in solution and in the solid state. The solid state structures of the oxidized complexes have been determined by X-ray crystal structure analysis. While the Ni and Pt analogues exhibit an essentially symmetric coordination sphere contraction upon oxidation, the oxidized Pd derivative exhibits an asymmetric metal binding environment demonstrating at least partial ligand radical localization. In comparison to the oxidized Salen and Salcn complexes, the propyl backbone of the Salpn complexes leads to a larger deviation from a planar geometry in the solid state. The electronic structure of the oxidized Salpn complexes was further probed by UV-vis-NIR measurements, electrochemistry, EPR spectroscopy, and theoretical calculations. The intense NIR band for the one-electron oxidized Salpn complexes shifts to lower energy in comparison to the 5-membered chelate analogues, which is attributed to lower metal d(xz) character in the β-LUMO for the Salpn series. The reactivity of the one-electron oxidized Salpn complexes with exogenous ligands was also studied. In the presence of pyridine, the oxidized Ni analogue exhibits a shift in the locus of oxidation to a Ni(III) species. The oxidized PtSalpn complex rapidly decomposes in the presence of pyridine, even at low temperature. Interestingly, electronic and EPR spectroscopy suggests that the addition of pyridine to the oxidized Pd analogue results in initial dissociation of the phenoxyl radical ligand, likely due to the increased flexibility of the propyl backbone.  相似文献   

9.
A series of novel mixed ligand dinickel complexes of the type [Ni(II)(2)L(μ-L')](+), where L' is a tetrahedral oxo-alkoxo vanadate (L' = [O(2)V(V)(OR)(2)](-), R = H or alkyl) and L a macrocyclic N(6)S(2) supporting ligand, have been prepared, and their esterification reactivity has been studied. The orthovanadate complex [Ni(2)L(μ-O(2)V(OH)(2))](+) (2), prepared by reaction between [Ni(2)L(μ-Cl)]ClO(4) with Na(3)VO(4) and a phase transfer reagent in CH(3)CN, reacts smoothly with MeOH and EtOH forming the vanadate diesters [Ni(2)L(μ-O(2)V(OMe)(2))](+) (3) and [Ni(2)L(μ-O(2)V(OEt)(2))](+) (4). The dialkyl orthovanadate esters in 3 and 4 are readily transesterified with mono- and difunctional alcohols. Complex 3 can also be generated from 4 by transesterification with MeOH. Complexes 3 and 4 react with diols (ethylene glycol, propylene glycol and diethylene glycol) as well to afford the complexes [Ni(2)L(μ-O(2)V(OH)(OCH(2)CH(2)OH))](+) (5), [Ni(2)L(μ-O(2)V(OCH(2))(2)CH(2))](+) (6), and [Ni(2)L(μ-O(2)V(OCH(2)CH(2))(2)O)] (7). The crystal structures of the tetraphenylborate salts of complexes 3-7 reveal in each case four-coordinate O(2)V(V)(OR)(2)(-) groups bonded in a μ(1,3)-bridging mode to generate trinuclear complexes with a central N(3)Ni(μ-S)(2)(μ(1,3)-O(2)V(OR)(2))NiN(3) core. The stabilization of the four-coordinate V(V)O(2)(OR)(2)(-) moieties is a consequence of both the two-point coordinative fixation to and the steric protection of the bowl-shape binding pocket of the [Ni(2)L](2+) fragment. Cyclic voltammetry experiments reveal that the encapsulated vanadate esters are not reduced in a potential window of -2.0 to +2.5 V vs SCE. The spins of the nickel(II) (S(i) = 1 ions) in 3 are weakly ferromagnetically coupled (J = +23 cm(-1), (H = -2JS(1)S(2))) to produce an S = 2 ground state.  相似文献   

10.
孙斌  陈骏如  胡家元  李贤均 《化学学报》2002,60(9):1613-1618
合成和表征了氯化双(呋喃甲醛)缩邻苯二胺合钴(II)(1)、氯化双(呋 喃甲醛)缩乙二胺合钴(II)(2)、氯化双(呋喃甲醛)缩1,2-丙二胺合钴( II)(3)和氯化双(呋喃甲醛)缩1,3-丙二胺合钴(II)(4)。在吡啶溶液中 和不同温度下,测定了配合物的饱和吸氧量,求出了氧加合常数和热力学参数ΔH °,ΔS°。并以这些配合物为催化剂,活化分子氧氧化环已烯得到高选择性的烯 丙位氧化产物。讨论了温度、配体结构对配合物氧合性能的影响和配体结构以及添 加NHPI(N-羟基邻苯二甲酰亚胺)对环已烯氧化反应的影响。  相似文献   

11.
12.
Rao PV  Bhaduri S  Jiang J  Holm RH 《Inorganic chemistry》2004,43(19):5833-5849
Sulfur bridging interactions between three cis-planar NiII-S2N2 complexes and NiII, CuI,II, ZnII, and HgII reactants were investigated by synthesis and X-ray crystal structures of some 24 complexes. This work was stimulated by recent crystallographic structures of the A-cluster of carbon monoxide dehydrogenase/acetylcoenzyme A synthase. This bridged biological assembly has the minimal formulation [Fe4S4]-(micro2-SCys)-[M((micro2-SCys)2Gly)Ni] with M = NiII, CuI, and ZnII at sites distal and proximal, respectively, to the iron-sulfur cluster. Bridges supported by representations of the distal nickel site were sought by reactions of the complexes [NiII(LH-S2N2)]2- and [NiII(LR-S2N2)], with 5-5-5 chelate ring patterns. Reaction products implicate the bridges Ni-(micro2-S)1,2-M in a variety of molecular structures, some with previously unknown connectivities of bridge atoms. The most frequently encountered bridge units are the nonplanar rhombs Ni(2-S)2M involving both sulfur atoms of a given complex. Those with M = NiII are biologically relevant inasmuch as the catalytic metal at the proximal site is nickel. The complex [Ni(L-655)]2-, containing the 6-5-5 ring pattern and coordination sphere of the distal nickel site, was prepared and structurally characterized. It was shown to sustain Ni2(micro2-S)2 rhombic interactions in the form of trinuclear [[Ni(L-655)]2Ni]2- and [[Ni(L-655)]Ni(R2PCH2CH2PR2)] (R = Et, Ph) in which the second NiII simulates the proximal site. Bridging interactions of NiII-S2N2 complexes are summarized, and geometrical features of Ni2(2-S)2 rhombs in these complexes, as dependent on ring patterns, are considered (LH-S2N2 = N,N'-ethylenebis(2-mercaptoisobutyramide)(4-); LR-S2N2 = trans-rac-N,N'-bis(2-mercapto-2-methylprop-1-yl)-1,2-cyclohexanediamine(2-); L-655 = N-(2-mercaptopropyl)-N'-(2'-mercaptoethyl)glycinamide(4-)).  相似文献   

13.
14.
Three new centrosymmetric trinuclear nickel(II) and manganese(II) complexes, Ni[Ni(CH(3)COO)(CPA)](2) (1), Ni[Ni(CH(3)COO)(BPA)](2) (2), Mn[Mn(CH(3)COO)(BPA)](2) (3), where H(2)CPA = N,N'-bis(5-chlorosalicylidene)-1,3-propanediamine, H(2)BPA = N,N'-bis(5-bromosalicylidene)-1,3-propanediamine, and two new centrosymmetric dinuclear zinc(II) complexes, [Zn(2)(CMP)(2)] (4) and [Zn(2)(BMP)(2)] (5), where H(2)CMP = 4-chloro-2-{[3-(5-chloro-2-hydroxybenzyl)aminopropylimino]methyl}phenol, and H(2)BMP = 4-bromo-2-{[3-(5-bromo-2-hydroxybenzyl)aminopropylimino]methyl}phenol, have been prepared from the Schiff bases derived from 5-halido-substituted salicylaldehydes with N-hexylpropane-1,3-diamine under solvothermal conditions. The complexes have been characterised by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction studies. The complexes 1, 2, and 3 crystallise in the monoclinic space group P2(1)/c with cell dimensions a = 9.347(1), b = 11.507(2), c = 18.539(2) ?, β = 93.774(2)°, Z = 2 (for 1), a = 9.111(4), b = 12.089(6), c = 18.724(8) ?, β = 92.117(7)°, Z = 2 (for 2), and a = 11.328(2), b = 22.468(5), c = 8.270(2) ?, β = 93.74(3)°, Z = 2 (for 3), while complexes 4 and 5 crystallise in the triclinic space group P1, with cell dimensions a = 7.483(1), b = 9.990(2), c = 12.155(2) ?, α = 75.27(3), β = 85.00(3), γ = 73.82(3)°, Z = 1 (for 4), and a = 7.008(1), b = 10.081(2), c = 13.095(3) ?, α = 100.62(3), β = 95.51(3), γ = 104.03(3)°, Z = 1 (for 5). It is interesting that the mono-Schiff bases 4-chloro-2-[(3-cyclohexylaminopropylimino)methyl]phenol (HCCP) and 4-bromo-2-[(3-cyclohexylaminopropylimino)methyl]phenol (HBCP) used to prepare the nickel(II) and manganese(II) complexes were transferred to bis-Schiff bases H(2)CPA and H(2)BPA in the complexes 1, 2, and 3, while the mono-Schiff bases HCCP and HBCP used to prepare the zinc(II) complexes were transferred to novel ligands H(2)CMP and H(2)BMP, bearing the unexpected, newly formed carbon-nitrogen single bond.  相似文献   

15.
Dong Q  Rose MJ  Wong WY  Gray HB 《Inorganic chemistry》2011,50(20):10213-10224
Here we report the syntheses and crystal structures of a series of cobalt(II) and nickel(II) complexes derived from (R)NP2 ligands (where R = OMe(Bz), H(Bz), Br(Bz), Ph) bearing ethylene linkers between a single N and two P donors. The Co(II) complexes generally adopt a tetrahedral configuration of general formula [(NP2)Co(I)(2)], wherein the two phosphorus donors are bound to the metal center but the central N-donor remains unbound. We have found one case of structural isomerism within a single crystal structure. The Co(II) complex derived from (Bz)NP2 displays dual coordination modes: one in the tetrahedral complex [((Bz)NP2)Co(I)(2)]; and the other in a square pyramidal variant, [((Bz)NP2)Co(I)(2)]. In contrast, the Ni(II) complexes adopt a square planar geometry in which the P(Et)N(Et)P donors in the ligand backbone are coordinated to the metal center, resulting in cationic species of formula [((R)NP2)Ni(I)](+) with iodide as counterion. All Ni(II) complexes exhibit sharp (1)H and (31)P spectra in the diamagnetic region. The Co(II) complexes are high-spin (S = 3/2) in the solid state as determined by SQUID measurements from 4 to 300 K. Solution electron paramagnetic resonance (EPR) experiments reveal a high-spin/low-spin Co(II) equilibrium that is dependent on solvent and ligand substituent.  相似文献   

16.
The coordination chemistry of four enantiopure tetradentate bis(iminoquinoline) ligands with nickel(II) salts is reported. The previously reported ligands CBQ, CPQ, BBQ, and BPQ result from the condensation of (1R,2R)-cyclohexyldiamine or (R)-BINAM with two equivalents of 2-formylbenzo[h]quinoline or 8-isopropyl-2-quinolinecarboxaldehyde {CBQ = (1R,2R)-cyclohexanediamine-N,N'-bis(benzo[h]quinoline-2-ylmethylene), CPQ = (1R,2R)-cyclohexanediamine-N,N'-bis[[(8-isopropyl)-2-quinolinyl]methylene], BBQ = [(R)-1,1'-binaphthalene]-2,2'-diamine-N,N'-bis(benzo[h]quinoline-2-ylmethylene), BPQ = [(R)-1,1'-binaphthalene]-2,2'-diamine-N,N'-bis[[(8-isopropyl)-2-quinolinyl]methylene]}. Reaction of NiI(2) with the (1R,2R)-cyclohexyl ligands gives the mononuclear distorted trigonal-bipyramidal (TBP) complexes [Ni(N(3)-CBQ)I(2)] and [Ni(N(3)-CPQ)I(2)]. Incomplete iodide abstraction from [Ni(N(3)-CPQ)I(2)] with AgOTf leads to partial replacement of the iodide with hydroxide from adventitious water to give [Ni(N(3)-CPQ)I(1.6)(OH)(0.4)] (distorted TBP). The corresponding reaction with [Ni(N(3)-CBQ)I(2)] again fails to remove all of the iodide, resulting instead in conversion to the syn dinuclear [Ni(2)(CBQ)(μ-X)(2)I(2)] (X = Cl(0.925)I(0.075)) complex, where chloride abstraction from the solvent (CH(2)Cl(2)) has resulted in a mixed halide system and the metal centers are square-pyramidal. Reaction of Ni(OTf)(2) with CBQ leads to the isolation of the octahedral cation [Ni(CMBQ)(2)](2+), with CMBQ [(1R,2R)-cyclohexanediamine-mono-N-(benzo[h]quinoline-2-ylmethylene)] being the partial hydrolysis product of CBQ. [Ni(CMBQ)(2)][OTf](2) crystallizes as a 1:1 mixture of P and M helical diastereomers. The coordination of NiI(2) with the (R)-BINAM derived ligands yields the anti dinuclear P-helical complexes [Ni(2)(BBQ)(μ-I)(2)I(2)] and [Ni(2)(BPQ)(μ-I)(2)I(2)]: one nickel ion is coordinated in each bidentate iminoquinoline pocket and the geometry at the metal centers is distorted square-pyramidal. Characterisation by (1)H NMR, UV-Vis, electronic circular dichroism (ECD) spectroscopy, combustion analysis, and HRMS is reported in addition to structural and halide abstraction studies.  相似文献   

17.
The four-coordinate iron complexes, [Fe(III)(pda(2-))(pda(.-))] (1) and [AsPh(4)](2)[Fe(II)(pda(2-))(2)] (2) were synthesized and fully characterized; pda(2-) is the closed-shell ligand N,N'-bis(pentafluorophenyl)-o-phenylenediamido(2-), and pda(.-) represents its one-electron-oxidized pi-radical anion. Single-crystal X-ray diffraction studies of 1 and 2 performed at 100(2) K reveal a distorted tetrahedral coordination environment at the iron centers, as a result of the intramolecular pi-pi interactions between C(6)F(5) rings. The electronic structures of 1 and 2 were unambiguously determined by a combination of (57)Fe M?ssbauer and electronic spectroscopy, magnetic susceptibility measurements, X-ray crystallography, and DFT calculations. Compound 1 contains an intermediate-spin Fe(III) ion (S(Fe)=3/2) strongly antiferromagnetically coupled to a pi-ligand radical (S(R)=1/2) yielding an S(t)=1 ground state. Complex 2 possesses a high-spin Fe(II) center (S(Fe)=2) with two closed-shell dianionic ligands. Complexes 1 and 2 are members of the redox series [Fe(pda)(2)](n) with n=0 for 1 and n=2- for 2. The anion n=1- has been reported previously in the coordination salt [Fe(dad)(3)][Fe(pda)(2)] (3; dad=N,N'-bis(phenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene). A complicated temperature-dependent electronic structure has been observed for this salt. Here, DFT calculations performed on 3 confirm the previous assignments of spin- and oxidation-states. Thus, [Fe(pda)(2)](n) (n=0, 1-, 2-) constitutes an electron-transfer series, which has also been established by cyclic voltammetry; the mono- and dications (n=1+ and 2+) are also accessible in solution, but have not been further investigated. The (57)Fe M?ssbauer spectra of [Fe(pda)(2)](n) species in 1 and 3 show extremely large quadrupole splitting constants due to addition of the valence and covalence contributions that have been confirmed by DFT calculations.  相似文献   

18.
Huang Y  Liu T  Lin J  Lü J  Lin Z  Cao R 《Inorganic chemistry》2011,50(6):2191-2198
One-dimensional (1D) homochiral nickel coordination polymers [Ni(3)(bpdc)(RR-L)(2)·(DMF)](n) (2R, RR-L = (R,R)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene), bpdc = 4,4'-biphenyldicarboxylic acid) and [Ni(3)(bpdc)(SS-L)(2)·(DMF)](n) (2S, SS-L = (S,S)-(-)-1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene) based on enantiopure pyridyl-functionalized salen(Ni) metalloligand units NiL ((1,2-cyclohexanediamino-N,N'-bis(3-tert-butyl-5-(4-pyridyl)salicylidene))Ni(II)) have been synthesized and characterized by microanalysis, IR spectroscopy, solid-state UV-vis spectroscopy, thermogravimetric analysis (TGA), circular dichroism (CD) spectroscopy, cyclic voltammetric measurement, and powder and single crystal X-ray diffraction. Each NiL as unbridging pendant metalloligand uses one terminal pyridyl group to coordinate achiral unit (nickel and bpdc(2-)) building a helical chain, while the other pyridyl group remains uncoordinated. Both 2R and 2S contain left- and right-handed helical chains made of the achiral building blocks, while the NiL as remote external chiral source is perpendicular to the backbone of the helices. The nickel coordination polymers 2R and 2S containing unsaturated active nickel center in metalloligand NiL can be used as self-supported heterogeneous catalysts. They show catalytic activity comparable with their homogeneous counterpart in alkene epoxidation and exhibit great potential as recyclable catalysts.  相似文献   

19.
The tetra- and binuclear heterometallic complexes of nickel(II)-vanadium(IV/V) combinations involving a phenol-based primary ligand, viz., N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine (H2L1), are reported in this work. Carboxylates and beta-diketonates have been used as ancillary ligands to obtain the tetranuclear complexes [Ni(II)(2)V(V)(2)(RCOO)(2)(L(1))(2)O(4)] (R = Ph, 1; R = Me(3)C, 2) and the binuclear types [(beta-diket)Ni(II)L(1)V(IV)O(beta-diket)] (3 and 4), respectively. X-ray crystallography shows that the tetranuclear complexes are constructed about an unprecedented heterometallic eight-membered Ni(2)V(2)O(4) core in which the (L(1))(2)- ligands are bound to the Ni center in a N(2)O(2) mode and simultaneously bridge a V atom via the phenoxide O atoms. The cis-N(2)O(4) coordination geometry for Ni is completed by an O atom derived from the bridging carboxylate ligand and an oxo O atom. The latter two atoms, along with a terminal oxide group, complete the O5 square-pyramidal coordination geometry for V. Each of the dinuclear compounds, [(acac)Ni(II)L(1)V(IV)O(acac)] (3) and [(dbm)Ni(II)L(1)V(IV)O(dbm)] (4) [Hdbm = dibenzoylmethane], also features a tetradentate (L(1))(2)- ligand, Ni in an octahedral cis-N(2)O(4) coordination geometry, and V in an O(5) square-pyramidal geometry. In 3 and 4, the bridges between the Ni and V atoms are provided by the (L(1))(2)- ligand. The Ni...V separations in the structures lie in the narrow range of 2.9222(4) A (3) to 2.9637(5) A (4). The paramagnetic Ni centers (S = 1) in 1 and 2 are widely separated (Ni...Ni separations are 5.423 and 5.403 A) by the double V(V)O(4) bridge that leads to weak antiferromagnetic interactions (J = -3.6 and -3.9 cm-1) and thus an ST = 0 ground state for these systems. In 3 and 4, the interactions between paramagnetic centers (Ni(II) and V(IV)) are also antiferromagnetic (J = -8.9 and -10.0 cm-1), leading to an S(T) = 1/2 ground state. Compound 4 undergoes two one-electron redox processes at E(1/2) = +0.66 and -1.34 V vs Ag/AgCl reference due to a V(IV/V) oxidation and a Ni(II)/I reduction, respectively, as indicated by cyclic and differential pulse voltammetry.  相似文献   

20.
[Reaction: see text] Transformation of enantiopure diastereoisomers (2R,1'S)- and (2S,1'S)-2-(1-aminoalkyl)epoxides into the corresponding 4-(1-aminoalkyl)-1,3-dioxolanes is achieved by reaction with different ketones in the presence of BF3.Et2O. The conversion takes place in very high yields, total selectivity, and without epimerization. A mechanism to explain this transformation is proposed. The obtained 1,3-dioxolanes can be deprotected, and (2R,3S)- and (2S,3S)-3-aminoalkano-1,2-diols were isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号