首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
密度矩阵重正化群(DMRG)作为低维强关联体系中电子结构计算的强有力方法被广泛熟知,并被迅速地应用于量子化学,不仅在电子结构计算中发挥重要作用,同时也在近几年迅速地成为复杂体系量子动力学计算的重要方法.在DMRG框架中,衍生出了一系列计算动态响应性质的有效方法,并得到了广泛应用.本文简述了DMRG的基本理论,其矩阵乘积态(MPS)表示有效地扩展了该方法的应用范围.重点介绍了基于线性响应理论的动态DMRG,在频率空间求解系统在零温以及有限温度下响应性质的算法,并介绍其在电子关联问题和电子-声子关联问题中的应用,最后展望了该领域的未来发展方向.  相似文献   

2.
低维无机功能材料电学行为的调控主要依赖于本征异质原子掺杂,但是该方法在性质调控的同时,由于异质原子的嵌入常导致原有晶体结构对称性发生改变,产生变形扭曲甚至破坏.目前,基于清晰结构调控无机材料功能性依然是极具挑战性的难题.氢作为一种小半径轻原子,对低维无机功能材料的修饰或嵌入为调控无极功能材料物性带来了新思路,特别是通过氢的嵌入可以在结构不发生大变化的前提下调制材料载流子浓度并提升导电率,这已逐渐成为低维无机材料电学行为调控的重要途径.本文概述了近年来发展的系列氢化调控方法,以及通过对电子结构调制实现对电学行为的调控,并基于此广泛应用于能源领域、电子器件及催化等方面.  相似文献   

3.
结构化液体是近年来基于二元流体体系,利用固体粒子液/液界面自组装和堵塞相变构筑的一类非平衡态软物质材料,兼具固体的结构稳定性和液体的流动性.然而,受限于组装基元和成型方法,制备具有精准结构的智能结构化液体及衍生功能材料仍面临挑战.我们课题组在该领域开展了大量研究工作,在发展界面调控新机制,制备液体/固体新材料,以及实现材料器件新突破等方面取得了系列创新成果.本专论从固体粒子界面自组装机制出发,重点阐述了一种利用纳米粒子和聚合物液/液界面共组装制备纳米粒子表面活性剂,进而构筑结构化液体的普适策略;总结归纳了结构化液体在响应性调控、高效精准构筑以及功能材料制备等方面的研究进展;并对该领域面临的机遇和挑战做出展望.  相似文献   

4.
量子耗散与量子输运的级联方程组方法   总被引:1,自引:0,他引:1  
郑晓  徐瑞雪  许健  金锦双  胡洁  严以京 《化学进展》2012,24(6):1129-1152
级联方程已成为研究量子开放系统的稳态性质和动力学过程的重要方法。本文旨在系统综述量子耗散和量子输运的级联方程组方法的建立、发展以及在理论、算法和应用方面的一些最新进展。级联方程形式理论的建立以影响泛函路径积分为基础,并具有数值上的高效性和应用上的灵活性,可用于研究分子体系的复杂动力学过程以及强关联电子体系中的量子输运。其级联耦合结构以非微扰的方式揭示了多体相互作用、体系-环境耦合、非马尔可夫记忆等的综合效应。作为应用示例,我们采用级联方程模拟了生物光富集体系的二维相干动力学光谱以及含时电子输运过程中的动态近藤效应。  相似文献   

5.
近年来, 二维材料特别是二维过渡金属硫属化合物材料作为一个新兴研究领域引起了人们极大的兴趣, 它们也被认为是基于石墨烯电子器件的补充材料. 过渡金属硫属化合物之所以能引起人们强烈的兴趣, 在于它们奇特的性质以及其在催化, 能量存贮, 电子, 光电等领域的广泛应用. 自2007年开始, 双电层离子液体晶体管技术被广泛的应用于有机和无机材料包括过渡金属硫属化合物材料以修饰或者调控这类材料的电性质. 基于这种双电层晶体管技术, 材料的迁移率, 操作电压等被进一步改善, 绝缘-金属相变, 超导甚至是铁磁性质也被实现. 本工作将综述双电层离子液体晶体管技术对二维材料的调控性能和简要展望其今后的发展方向.  相似文献   

6.
KBF4非等温固-固相变热性质的测定   总被引:1,自引:0,他引:1  
利用DTA-TG和DSC热分析技术研究了无机塑晶材料KBF4固-固相变的热性能,测得转变温度为284.13℃,转变焓为105.73J/g.KBF4固-固相变的机理是随着温度的升高,晶体中离子键部分断裂,晶体逐渐由低对称的正交晶系向高对称立方晶系转变,并在这过程中,同时引入化学键的振动和转动无序,从而吸收大量的相变焓.  相似文献   

7.
FSM-16沸石和纳米TiO2/FSM-16沸石的合成与光谱表征   总被引:4,自引:0,他引:4  
二氧化钛纳米相超细粉体由于具有独特的光电性质和良好的化学稳定性, 近年来已引起人们高度重视. 这种粉体是光催化、太阳能转换、精细陶瓷等领域的重要材料, 尤其在废水处理中已得到了普遍应用[1,2]. 但悬浮相二氧化钛具有易失活、易凝聚和难回收等弱点. 就此而言, 近期十分引人关注的分子筛主体-纳米客体复合材料为解决这个难题提供了新的途径. 特别是具有规则孔道结构的中孔沸石分子筛, 由于孔径在纳米级范围内的可调性, 被认为是纳米粒子组装理想的宿主, 为低维材料(量子点、量子线和超晶格等)的特殊物理、化学性质研究提供了有力工具.  相似文献   

8.
通常,将三维受限的零维无机半导体纳米晶体称为量子点(Quantum dots,QDs).量子点具有优异的荧光性质,在荧光标记、激光、发光二极管、太阳能电池等前沿领域有着十分广泛的应用前景.就生物标记而言,与传统的有机荧光染料和荧光蛋白相比,量子点优异的荧光性质体现在,具有发光颜色可通过不同粒径和(或)组成进行调控、激发光谱宽而连续、发射光谱窄而对称、荧光量子产率高、荧光亮度高、光稳定性好(耐光漂白)等优点.  相似文献   

9.
固体表面有机分子自组装是合成低维超分子材料和对固体表面进行功能化的重要途径.本文主要介绍了利用理论计算与扫描隧道显微镜实验相结合的手段研究固体表面分子自组装机制及结构与物性调控的相关工作.主要聚焦于几种由弱相互作用主导的分子自组装过程,从影响固体表面功能分子自组装过程的基本要素出发,如固体表面性质、功能分子的结构、功能分子间相互作用的类型和强度以及有卤族元素增原子参与的组装等,介绍了这些要素在构筑并调控分子自组装结构中的作用,理解固体表面功能分子自组装结构的调控机制,最后对如何实现分子自组装结构及物性的可控调制进行了展望,为设计新型低维超分子网格结构提供思路.  相似文献   

10.
密度矩阵重正化群(DMRG)作为计算低维强关联体系强有力的方法为人熟知,在量子化学电子结构计算中得到广泛应用.最近几年,含时密度矩阵重正化群(TD-DMRG)的理论取得较快发展, TD-DMRG逐渐成为复杂体系量子动力学理论模拟的重要新兴方法之一.本文综述了基于矩阵乘积态(MPS)和矩阵乘积算符(MPO)的DMRG基本理论,并重点介绍了若干最常见的TD-DMRG时间演化算法,包括基于演化再压缩(P&C)的算法、基于含时变分原理(TDVP)的算法和时间步瞄准(TST)算法;还对利用TD-DMRG模拟有限温体系的纯化(Purification)算法和最小纠缠典型量子热态(METTS)算法进行了介绍.最后,对近年TD-DMRG在复杂体系量子动力学中的应用进行了总结.  相似文献   

11.
受猪笼草口缘区润滑效应启发,将低表面能液体注入高分子微纳米多孔结构中可构筑高分子固液复合界面.与超疏水固体界面相比,固液复合界面展现出独特的浸润性和黏附性.界面黏附是高分子复合材料重要的性质之一,实现界面黏附的精准调控对促进这类材料的发展和应用具有至关重要的作用.本文重点从稳定性调控、方向性调控以及原位可逆调控3个方面综述提升固液复合界面黏附可控性的工作,通过在表面微米结构中组装纳米层状及异质纳米层状结构,提高界面黏附的稳定性;使用界面薄层定向冷冻干燥法、激光刻蚀法以及复型法等方法,构筑具有取向结构的高分子固液复合界面,实现界面黏附的方向性调控;通过在界面中引入快速响应的智能基元,设计智能响应高分子固液复合界面,实现界面黏附的原位可逆调控.最后,概述了这类材料目前存在的问题并展望了其未来发展的方向.  相似文献   

12.
基于聚(N-异丙基-2-甲基丙烯酰胺)(PNiPMA)在升温和降温两个过程中测得的变温红外光谱构筑样本-样本杂合二维相关(Hybrid 2D Correlation)光谱,揭示其在热诱导相变过程中初始组分的恢复程度、相转变温度以及转变速率等物理参数的可逆性.  相似文献   

13.
由无机与有机组分组成的无机-有机杂化材料因其优异的性能及良好的物理化学性质在光催化领域得到了广泛的关注.目前,已经开发的单相光催化剂有很多种,但其很难同时满足宽的光激发范围以及高的光吸收能力和强的氧化还原能力等需求,因此,科研人员开发了很多方法去解决上述问题,主要包括以下两大类.第一类,修饰光催化剂扩大光激发范围以及增强可见光吸收.例如构建固溶体、引入表面缺陷、杂质掺杂、染料敏化和表面等离子体共振等策略.第二类,构建半导体异质结,通过界面处的协同作用有效促进光生电子空穴对的转移与分离.例如type II型、直接Z型以及S型异质结等.有机成分与无机成分的杂化是有效解决上述问题的方法之一.大部分有机材料具有成本低、吸光系数高以及比表面积大等优点;但低的强度以及宽的带隙限制了有机材料在光催化上的应用.而大部分无机材料具有高强度、窄带隙以及良好的光学性能.但低韧性和较差的分散性限制了无机材料在光催化上的应用.无机-有机杂化材料不仅保留了无机与有机组分的原有性质,而且界面处组分之间的协同作用会产生新的性质,如高的载流子传输能力和高的光吸收能力等.无机-有机杂化材料是多相材料,其中的一相是纳米材料...  相似文献   

14.
智能聚合物在医药与生物工程中的应用   总被引:5,自引:0,他引:5  
智能聚合物是一类对于外界环境微小的物理和化学刺激,其自身性质会发生明显改变的聚合物,这类聚合物能以各种形式存在,如固体、溶液或吸附于载体表面,水溶性智能聚合物系统与生物分子相结合能够产生一类对物理、化学和生物刺激有响应的新的聚合物,本文综述了这类聚合物系统的研究进展。  相似文献   

15.
基于量子棒良好的光吸收和电荷输运性能以及二维材料优异的光催化性质,构筑了新型的量子棒/二维MoS_2杂化光催化材料.深入理解并调控二者界面处的光致电荷分离与复合过程是该类材料推广应用的前提.本文采用飞秒激光泵浦-探测瞬态吸收光谱技术,直接观测到了从Cd Se和Cd S胶体量子棒到层状二硫化钼(MoS_2)超快的界面电荷转移(分别为205 ps和26 ns)和高效的电荷分离(分离效率为98%和69%)过程.研究发现,与Cd S/MoS_2相比,Cd Se/MoS_2界面处更强的电子耦合作用使其电子转移速率比前者高出两个数量级.电子转移后的Cd Se~+/MoS_2-分离态较长的寿命(12 ns)使分离后的电子在MoS_2中实现长距离(约2.2mm)扩散,这为电子顺利到达二维MoS_2边缘的活性位点进行催化反应提供了有效保障.  相似文献   

16.
随着量子化学理论方法和计算机技术的发展,量子理论模型已成为一种研究分子的高能、不稳定电子态-激发态的最有效手段.通过对一系列d8和d10配合物的激发态电子结构和电子激发前后金属相互作用的理论研究进行了评述.电子吸收和发射是极其复杂的微观过程,涉及到基态与激发态的电子结构性质、金属间弱相互作用、相对论效应等量子理论的基础问题,揭示配合物发光性质的规律性对新型光学材料的探索和设计具有重要指导意义.  相似文献   

17.
根据热力学微扰理论研究了Aa型Patchy胶体的相态结构,考察了Patch之间的缔合强度及Patch数目对体系相态结构的调控机制.利用相平衡原理给出了Patchy胶体的流体、玻璃态固体和面心立方晶体之间转变及溶胶-凝胶转变的相图,讨论了玻璃态和晶态固相的成核机制、临界现象和相变问题.研究结果表明,Patchy胶体粒子之间的缔合作用和Patch数目可以显著地调控体系的三相点、临界温度和临界密度等特征.在高温条件下,Patchy胶体以一次成核方式结晶;而在低温条件下则以两步成核方式逐步成核结晶,中间经过非晶态的玻璃态固相作为过渡.说明Patchy粒子之间的缔合作用对其相态结构具有决定性影响,因而成为调控体系聚集态结构的重要因素.  相似文献   

18.
CO2智能响应材料在受到CO2刺激时,材料自身物理结构或化学性质发生可逆转变.本文根据对CO2响应基团的不同,将CO2智能响应材料分成基于胺基基团和基于脒基基团的两大类,分别对其制备方法和应用进行了综述,并对CO2智能响应材料的发展进行了展望.  相似文献   

19.
研发响应多重外界刺激而改变形貌的嵌段共聚物微球对发展新型智能材料具有重要意义.本工作提出了一种温度/pH双响应嵌段共聚物微球形貌转变的策略.在利用乳液挥发法制备聚苯乙烯-b-聚(4-乙烯基吡啶)(PS-b-P4VP)微球时,引入温度/pH双响应的聚丙烯酸-b-聚(N-异丙基丙烯酰胺)(PAA-b-PNIPAM)作为表面活性剂,通过调控实验温度以及水相的pH值,实现了PS-b-P4VP微球在蚕蛹状、草莓状、洋葱状等形貌之间的转变.这种独特的形貌转变依赖于温度/pH调控的PAA-b-PNIPAM的亲疏水性转变,以及由此导致的表面活性剂在界面分布位置的改变,进而改变了油水界面的界面选择性以及微球的形貌.通过改变PAA-b-PNIPAM的质量分数、PAA和PNIPAM的嵌段比,系统地研究了温度/pH对PS-b-P4VP微球形貌转变机制的影响.提供了一种温度/pH双响应的微球形貌转变的策略,有望在药物释放、智能传感等领域发挥重要作用.  相似文献   

20.
近红外量子点因其吸收光谱更宽、荧光发射波长更长等特性,具有广阔的应用前景.优异的分析性能是实现其应用的基础,而分析性能,包括荧光发射波长、荧光强度及表面性质等,与其结构息息相关.基于对其结构的深入研究,近红外量子点分析性能的精细调控得以实现.基于本课题组的工作,本文从无机晶核与表面配体层两方面出发,评述了近年来近红外量子点分析性能的调控策略,指出了目前存在的不足与挑战,以期推动近红外量子点的应用与发展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号