首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A novel adaptive observer-based control scheme is presented for synchronization and suppression of a class of uncertain chaotic system. First, an adaptive observer based on an orthogonal neural network is designed. Subsequently, the sliding mode controllers via the proposed adaptive observer are proposed for synchronization and suppression of the uncertain chaotic systems. Theoretical analysis and numerical simulation show the effectiveness of the proposed scheme.  相似文献   

2.
A scheme for implementing secure communication based on chaotic maps and strong tracking filter (STF) is presented, and a modified STF algorithm with message estimation is developed for the special requirement of chaotic secure communication. At the emitter, the message symbol is modulated by chaotic mapping and is output through a nonlinear function. At the receiver, the driving signal is received and the message symbol is recovered dynamically by the STF with estimation of message symbol. Simulation results of Holmes map demonstrate that when message symbols are binary codes, STF can effectively recover the codes of the message from the noisy chaotic signals. Compared with the extended Kalman filter (EKF), STF has a lower bit error rate.  相似文献   

3.
In this Letter, an adaptive control scheme is developed to study the anti-synchronization behavior between two identical and different chaotic systems with unknown parameters. This adaptive anti-synchronization controller is designed based on Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of parameters is shown. The adaptive anti-synchronization between two identical systems (Chen system) and different systems (Genesio and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

4.
Eun-Ju Hwang 《Physics letters. A》2009,373(22):1935-1939
This Letter presents fuzzy model-based robust tracking control for the adaptive synchronization of uncertain chaotic systems. Fuzzy model and adaptive algorithm are employed to present the unknown chaotic systems. H and sliding mode control are combined to construct a robust tracking controller. The incorporated H controller can attenuate the external disturbance and approximation error to any prescribed level. The proposed scheme guarantees that all the variables are bounded and the tracking error is compensated.  相似文献   

5.
Chaos synchronization of two different chaotic systems with known and unknown parameters is studied. Based on the Lyapunov stability theory, two different chaotic systems with known parameters realize global synchronization via the successfully designed nonlinear controller. By employing an adaptive synchronization scheme, the synchronization of two different chaotic systems with unknown parameters is achieved. Numerical simulations validate the effectiveness of the theoretical analysis.  相似文献   

6.
In this paper, a two-input two-output secure communication scheme based on a four-wing four-dimensional chaotic system with disturbance inputs is discussed. Based on parameter modulation theory and Lyapunov stability theory, synchronization and secure communication between transmitter and receiver are achieved and two message signals are recovered via a convenient robust high-order sliding mode adaptative controller. In addition, the gains of the receiver system can be adjusted continually, the unknown parameters can be identified precisely and the disturbance inputs can be suppressed simultaneously by the proposed adaptative controller. Synchronization under the effect of noise is also considered. Computer simulations are done to verify the proposed methods and the numerical results show that the obtained theoretic results are feasible and efficient.  相似文献   

7.
A general response system control method for synchronization of continuous scalar chaotic signal is presented. The proposed canonical genera/response system can cover most of the well-known chaotic systems. Conversely, each of these chaotic systems can Mso be used to construct the genera/response system. Furthermore, a novel controller of the proposed response system is designed based on backstepping technique, with which the output of the genera/response system and the given continuous chaotic signal can synchronize perfectly. Two numerical examples are given to illustrate the effectiveness of the proposed control method.  相似文献   

8.
In this Letter, we have dealt with the problem of lag synchronization and parameter identification for a class of chaotic neural networks with stochastic perturbation, which involve both the discrete and distributed time-varying delays. By the adaptive feedback technique, several sufficient conditions have been derived to ensure the synchronization of stochastic chaotic neural networks. Moreover, all the connection weight matrices can be estimated while the lag synchronization is achieved in mean square at the same time. The corresponding simulation results are given to show the effectiveness of the proposed method.  相似文献   

9.
This work is concerned with the general methods for modified projective synchronization of hyperchaotic systems. A systematic method of active control is developed to synchronize two hyperchaotic systems with known parameters. Moreover, by combining the adaptive control and linear feedback methods, general sufficient conditions for the modified projective synchronization of identical or different chaotic systems with fully unknown or partially unknown parameters are presented. Meanwhile, the speed of parameters identification can be regulated by adjusting adaptive gain matrix. Numerical simulations verify the effectiveness of the proposed methods.  相似文献   

10.
张家树 《中国物理快报》2006,23(12):3187-3189
Based on the bounded property and statistics of chaotic signal and the idea of set-membership identification, we propose a set-membership generalized least mean square (SM-GLMS) algorithm with variable step size for blind adaptive channel equalization in chaotic communication systems. The steady state performance of the proposed SM-GLMS algorithm is analysed, and comparison with an extended Kalman filter (EKF)-based adaptive algorithm and variable gain least mean square (VG-LMS) algorithm is performed for blind adaptive channel equalization. Simulations show that the proposed SM-GLMS algorithm can provide more significant steady state performance improvement than the EKF-based adaptive algorithm and VG-LMS algorithm.  相似文献   

11.
A sliding mode adaptive synchronization controller is presented with a neural network of radial basis function (RBF) for two chaotic systems. The uncertainty of the synchronization error system is approximated by the RBF neural network. The synchronization controller is given based on the output of the RBF neural network. The proposed controller can make the synchronization error convergent to zero in 5s and can overcome disruption of the uncertainty of the system and the exterior disturbance. Finally, an example is given to illustrate the effectiveness of the proposed synchronization control method.  相似文献   

12.
Wei Yang 《Physics letters. A》2010,374(4):557-3089
In this Letter, we investigate function projective synchronization of two-cell quantum-CNN chaotic oscillators using nonlinear adaptive controller. Based on Lyapunov stability theory, the nonlinear adaptive control law is derived to make the state of two chaotic systems function projective synchronized. Two numerical simulations are presented to illustrate the effectiveness of the proposed nonlinear adaptive control scheme, which is more effective than that in previous literature.  相似文献   

13.
This Letter investigates the synchronization problem of a complex network with nonidentical nodes, and proposes two effective control schemes to synchronize the network onto any smooth goal dynamics. By applying open-loop control to all nodes and placing adaptive feedback injections on a small fraction of network nodes, a low-dimensional sufficient condition is derived to guarantee the global synchronization of the complex network with nonidentical nodes. By introducing impulsive effects to the open-loop controlled network, another synchronization scheme is developed for the network composed of nonidentical nodes, and an upper bound of impulsive intervals is estimated to ensure the global stability of the synchronization process. Numerical simulations are given to verify the theoretical results.  相似文献   

14.
Impulsive Control for Fractional-Order Chaotic Systems   总被引:1,自引:0,他引:1       下载免费PDF全文
We propose an impulsive control scheme for fractional-order chaotic systems. Based on the Takagi-Sugeno (T-S) fuzzy model and linear matrix inequalities (LMfs), some sufficient conditions are given to stabilize the fractional-order chaotic system via impulsive control. Numerical simulation shows the effectiveness of this approach.  相似文献   

15.
In this Letter we numerically investigate the dynamics of a system of two coupled chaotic multimode Nd:YAG lasers with two mode and three mode outputs. Unidirectional and bidirectional coupling schemes are adopted; intensity time series plots, phase space plots and synchronization plots are used for studying the dynamics. Quality of synchronization is measured using correlation index plots. It is found that for laser with two mode output bidirectional direct coupling scheme is found to be effective in achieving complete synchronization, control of chaos and amplification in output intensity. For laser with three mode output, bidirectional difference coupling scheme gives much better chaotic synchronization as compared to unidirectional difference coupling but at the cost of higher coupling strength. We also conclude that the coupling scheme and system properties play an important role in determining the type of synchronization exhibited by the system.  相似文献   

16.
A new chaotic communication scheme using adaptive synchronization technique of two unified chaotic systems is proposed. Different from the existing secure communication methods, the transmitted signal is modulated into the parameter of chaotic systems. The adaptive synchronization technique is used to synchronize two identical chaotic systems embedded in the transmitter and the receiver. It is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical unified chaotic systems with unknown system parameters asymptotically synchronized; thus the parameter of the receiver system is identified. Then the recovery of the original information signal in the receiver is successfully achieved on the basis of the estimated parameter. It is noticed that the time required for recovering the information signal and the accuracy of the recovered signal very sensitively depends on the frequency of the information signal. Numerical results have verified the effectiveness of the proposed scheme.  相似文献   

17.
This Letter investigates the function projective synchronization of different chaotic systems with unknown parameters. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of two different chaotic systems asymptotically synchronized up to a desired scaling function. Numerical simulations on Lorenz system and Newton-Leipnik system are presented to verify the effectiveness of the proposed scheme.  相似文献   

18.
This Letter is concerned with the asymptotical stabilization problem of discrete chaotic systems by using a novel unified impulsive control scheme. Sufficient conditions for asymptotical stability of the impulsive controlled discrete systems are obtained by means of the Lyapunov stability theory and algebraic inequality techniques. Finally, numerical simulations on the Hénon and Ushio discrete chaotic systems are presented to illustrate the effectiveness and usefulness of the unified impulsive control scheme.  相似文献   

19.
In this Letter, an electrical circuit is built for realizing the multi-state intermittency generated by a simple force-driven chaotic system. The intermittency phenomenon and its underlaying mechanism are analyzed, and the experimental results are discussed. It is shown that, with two classes of invariant subspaces, the number of the laminar states and the distance between the adjacent laminar states of the created multi-state on-off intermittency can be arbitrarily changed by manipulating the control parameters.  相似文献   

20.
Wei Lin 《Physics letters. A》2008,372(18):3195-3200
In the existing results on chaos control and synchronization based on the adaptive controlling technique (ACT), a uniform Lipschitz condition on a given dynamical system is always assumed in advance. However, without this uniform Lipschitz condition, the ACT might be failed in both theoretical analysis and in numerical experiment. This Letter shows how to utilize the ACT to get a rigorous control for the system which is not uniformly Lipschitz but only locally Lipschitz, and even for the system which has unbounded trajectories. In fact, the ACT is proved to possess some limitation, which is actually induced by the nonlinear degree of the original system. Consequently, a piecewise ACT is proposed so as to improve the performance of the existing techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号