首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
籍艳  崔宝同 《中国物理 B》2010,19(6):60512-060512
In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that they have fewer matrix variables yet less conservatism. In addition, a numerical example is provided to illustrate the applicability of the result using the linear matrix inequality toolbox in MATLAB.  相似文献   

2.
In this Letter, the state estimation problem is dealt with for a class of recurrent neural networks (RNNs) with mixed discrete and distributed delays. The activation functions are assumed to be neither monotonic, nor differentiable, nor bounded. We aim at designing a state estimator to estimate the neuron states, through available output measurements, such that the dynamics of the estimation error is globally exponentially stable in the presence of mixed time delays. By using the Laypunov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A simulation example is exploited to show the usefulness of the derived LMI-based stability conditions.  相似文献   

3.
This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise. Based on the Lyapunov--Krasovskii functional and a stochastic analysis approach, some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient. Numerical examples are given to illustrate the effectiveness.  相似文献   

4.
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov-Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.  相似文献   

5.
In this paper, the global asymptotic stability problem of Markovian jumping stochastic Cohen-Grossberg neural networks with discrete and distributed time-varying delays (MJSCGNNs) is considered. A novel LMI-based stability criterion is obtained by constructing a new Lyapunov functional to guarantee the asymptotic stability of MJSCGNNs. Our results can be easily verified and they are also less restrictive than previously known criteria and can be applied to Cohen-Grossberg neural networks, recurrent neural networks, and cellular neural networks. Finally, the proposed stability conditions are demonstrated with numerical examples.  相似文献   

6.
Some criteria for the global stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters are presented. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish some easy-to-test criteria of global exponential stability in the mean square for the stochastic neural networks. The criteria are computationally efficient, since they are in the forms of some linear matrix inequalities.  相似文献   

7.
In this Letter, we investigate the exponential synchronization problem for an array of N linearly coupled complex networks with Markovian jump and mixed time-delays. The complex network consists of m modes and the network switches from one mode to another according to a Markovian chain with known transition probability. The mixed time-delays are composed of discrete and distributed delays, both of which are mode-dependent. The nonlinearities imbedded with the complex networks are assumed to satisfy the sector condition that is more general than the commonly used Lipschitz condition. By making use of the Kronecker product and the stochastic analysis tool, we propose a novel Lyapunov–Krasovskii functional suitable for handling distributed delays and then show that the addressed synchronization problem is solvable if a set of linear matrix inequalities (LMIs) are feasible. Therefore, a unified LMI approach is developed to establish sufficient conditions for the coupled complex network to be globally exponentially synchronized in the mean square. Note that the LMIs can be easily solved by using the Matlab LMI toolbox and no tuning of parameters is required. A simulation example is provided to demonstrate the usefulness of the main results obtained.  相似文献   

8.
Yan Liu 《Physics letters. A》2009,373(41):3741-3742
In a previous work [Z.D. Wang, Y.R. Liu, L. Yu, X.H. Liu, Phys. Lett. A 356 (2006) 346] an exponential stability analysis for a class of Markovian jumping neural networks (MJNNs) was presented. In this Letter we employ the same technique to extend the results for MJNNs with time-varying delays and mode estimation, appropriate for active fault-tolerant control systems.  相似文献   

9.
This Letter is concerned with the robust state estimation problem for uncertain time-delay Markovian jumping genetic regulatory networks (GRNs) with SUM logic, where the uncertainties enter into both the network parameters and the mode transition rate. The nonlinear functions describing the feedback regulation are assumed to satisfy the sector-like conditions. The main purpose of the problem addressed is to design a linear estimator to approximate the true concentrations of the mRNA and protein through available measurement outputs. By resorting to the Lyapunov functional method and some stochastic analysis tools, it is shown that if a set of linear matrix inequalities (LMIs) is feasible, the desired state estimator, that can ensure the estimation error dynamics to be globally robustly asymptotically stable in the mean square, exists. The obtained LMI conditions are dependent on both the lower and the upper bounds of the delays. An illustrative example is presented to demonstrate the feasibility of the proposed estimation schemes.  相似文献   

10.
In this paper, we are concerned with input-to-state stability of a class of memristive bidirectional associative memory (BAM) neural networks with variable time delays. Based on a nonsmooth analysis and set-valued maps, some novel sufficient conditions are obtained for the input-to-state stability of such networks, which extended some known results as particular cases. Finally, a numerical example is presented to illustrate the feasibility and effectiveness of our results.  相似文献   

11.
O.M. Kwon  J.W. Kwon  S.H. Kim 《中国物理 B》2011,20(5):50505-050505
In this paper,the problem of stability analysis for neural networks with time-varying delays is considered.By constructing a new augmented Lyapunov-Krasovskii’s functional and some novel analysis techniques,improved delaydependent criteria for checking the stability of the neural networks are established.The proposed criteria are presented in terms of linear matrix inequalities(LMIs) which can be easily solved and checked by various convex optimization algorithms.Two numerical examples are included to show the superiority of our results.  相似文献   

12.
In this Letter, the chaotification for a class of cellular neural networks with distributed delays is studied. On the basis of the largest Lyapunov exponent, the sensitivity to the initial conditions is studied for the distributed delays with kernel being weak and strong. Some theoretical results about the chaotification for the neural network with distributed time delays are derived. Finally, two numerical simulations are presented to illustrate the effectiveness of the theoretical results.  相似文献   

13.
This paper is concerned with the analysis problem for the exponential stability of a class of Cohen-Grossberg neural networks with variable and distributed delays. Some sufficient conditions ensuring the existence, uniqueness and exponential stability of the equilibrium point are obtained by employing Brouwer’s fixed-point theorem and by applying the inequality technique. In the results, we do not assume that the activation function satisfies the boundedness and the Lipschitz condition. Three numerical examples are given to show the effectiveness of the obtained results.  相似文献   

14.
O.M. Kwon 《Physics letters. A》2010,374(10):1232-5781
This Letter investigates the problem of delay-dependent exponential stability analysis for uncertain stochastic neural networks with time-varying delay. Based on the Lyapunov stability theory, improved delay-dependent exponential stability criteria for the networks are established in terms of linear matrix inequalities (LMIs).  相似文献   

15.
Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov–Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.  相似文献   

16.
The paper is concerned with the state estimation problem for a class of time-delayed complex networks with event-triggering communication protocol. A novel event generator function, which is dependent not only on the measurement output but also on a predefined positive constant, is proposed with hope to reduce the communication burden. A new concept of exponentially ultimate boundedness is provided to quantify the estimation performance. By means of the comparison principle, some sufficient conditions are obtained to guarantee that the estimation error is exponentially ultimately bounded, and then the estimator gains are obtained in terms of the solution of certain matrix inequalities. Furthermore, a rigorous proof is proposed to show that the designed triggering condition is free of the Zeno behavior. Finally, a numerical example is given to illustrate the effectiveness of the proposed event-based estimator.  相似文献   

17.
张为元  李俊民 《中国物理 B》2011,20(3):30701-030701
This paper investigates the global exponential stability of reaction-diffusion neural networks with discrete and distributed time-varying delays.By constructing a more general type of Lyapunov-Krasovskii functional combined with a free-weighting matrix approach and analysis techniques,delay-dependent exponential stability criteria are derived in the form of linear matrix inequalities.The obtained results are dependent on the size of the time-varying delays and the measure of the space,which are usually less conservative than delay-independent and space-independent ones.These results are easy to check,and improve upon the existing stability results.Some remarks are given to show the advantages of the obtained results over the previous results.A numerical example has been presented to show the usefulness of the derived linear matrix inequality(LMI)-based stability conditions.  相似文献   

18.
In this Letter, a model describing dynamics of Cohen–Grossberg neural networks with distributed delays is considered. Without assuming Lipschitz conditions on activation functions, by employing Brouwer's fixed point theorem and applying inequality technique, some new sufficient conditions on the existence, uniqueness and exponential stability of equilibrium point are obtained. Finally, two examples with their numerical simulations are provided to show the correctness of our analysis.  相似文献   

19.
The problem of delay-dependent asymptotic stability criteria for neural networks with time-varying delay is investigated. A new class of Lyapunov functional is constructed to derive some new delay-dependent stability criteria.The obtained criterion are less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, numerical examples are given to demonstrate the effectiveness of the proposed method.  相似文献   

20.
This Letter deals with the problem of exponential stability for a class of delayed Hopfield neural networks. Based on augmented parameter-dependent Lyapunov-Krasovskii functionals, new delay-dependent conditions for the global exponential stability are obtained for two cases of time-varying delays: the delays are differentiable and have an upper bound of the delay-derivatives, and the delays are bounded but not necessary to be differentiable. The conditions are presented in terms of linear matrix inequalities, which allow to compute simultaneously two bounds that characterize the exponential stability rate of the solution. Numerical examples are included to illustrate the effectiveness of our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号