首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an interesting monogamy equation for (2⊗2⊗n)-dimensional pure states, by which a quantity is found to characterize the tripartite entanglement with the GHZ type and W type entanglements as a whole. In particular, we, for the first time, reveals that for any quantum state of a pair of qubits, the difference between the two remarkable entanglement measures, concurrence and negativity, characterizes the W type entanglement of tripartite pure states with the two-qubit state as reduced density.  相似文献   

2.
We definitively show, using an explicit and broadly applicable model, that local phase noise that is capable of eliminating state coherence only in the infinite-time limit is capable of eliminating nonlocality in finite time in three two-level systems prepared in the Bell-nonlocal tripartite states of the generic entanglement class.  相似文献   

3.
We study the entanglement dynamics of two atoms with initial tripartite entangled W-like state in the Tavis-Cummings model. We find that the entanglement evolvement is sensitive not only to the entanglement degree of the initial state but also to the concrete form of the initial state. The so-called sudden death effect occurs only for some initial states.  相似文献   

4.
We propose a quantum teleportation scheme for tripartite entangled coherent state (ECS) with continuous variable. Our scheme is feasible and economical in the sense that we need only linear optical devices such as beam splitters, phase shifters and photon detectors and employ three bipartite maximally ECSs as quantum channels. We also generalize the tripartite scheme into multipartite ease and calculate the minimum average fidelity for the schemes in tripartite and multipartite cases.  相似文献   

5.
In this communication we introduce a new model which represents the interaction between an atom and two fields injected simultaneously within a cavity including the nonlinear couplers. By using the canonical transformation the model can be regarded as a generalization of several well-known models. We calculate and discuss entanglement between the tripartite system of one atom and the two cavity modes. For a short interaction time, similarities between the behavior based on our solution compared with the other simulation based on a numerical linear algebra solution of the original Hamiltonian with truncated Fock bases for each mode, is shown. For a specific value of the Kerr-like medium defined in this letter, we find that the entanglement, as measured by concurrence, may terminate abruptly in a finite time.  相似文献   

6.
We propose a scheme for generating remote W-type entangled state via tripartite entanglement swapping of continuous variables, where two EPR pairs and a local W-type entangled state are required. Because of the co-existence of both bipartite and tripartite entanglement in a W-type entangled state, the three involved remote regions, without direct interaction, will become entangled after the prescribed entanglement swapping.  相似文献   

7.
In this paper, an intuitive approach is employed to generalize the full separability criterion of tripartite quantum states of qubits to the higher-dimensional systems [Phys. Rev. A 72, 022333 (2005)]. A distinct characteristic of the present generalization is that less restrictive conditions are needed to characterize the properties of full separability. Furthermore, the formulation for pure states can be conveniently extended to the case of mixed states by utilizing the Kronecker product approximate technique. As applications, we give the analytic approximation of the criterion for weakly mixed tripartite quantum states and investigate the full separability of some weakly mixed states.  相似文献   

8.
S. Parida 《Physics letters. A》2009,373(21):1852-1855
We theoretically show that the process of inner-shell photoionization in an atom A, followed by the spontaneous sequential emission of two Auger electrons, produces various kinds of spin-entangled states of three flying electronic qubits. All properties of these states are completely pre-determined by the total spin quantum numbers of the electronic states of four atomic species (i.e., A, A+, A2+, A3+) participating in this process in the Russell-Saunders coupling. These tripartite states are readily characterized experimentally by measuring only energies of the three emitted electrons, without requiring any entanglement witness or other such protocols.  相似文献   

9.
For a tripartite pure state superposed by two individual states, the bipartitely shared entanglement can always be achieved by local measurements of the third party. Consider the different aims of the third party, i.e. maximizing or minimizing the bipartitely shared entanglement, we find bounds on both the possible bipartitely shared entanglement of the superposition state in terms of the corresponding entanglement of the two states being superposed. In particular, by choosing the concurrence as bipartite entanglement measure, we obtain calculable bounds for tripartite (2 ⊗ 2 ⊗ n)-dimensional cases.  相似文献   

10.
We obtain exact solution of the Dirac equation with the Coulomb potential as an infinite series of square integrable functions. This solution is for all energies, the discrete as well as the continuous. The spinor basis elements are written in terms of the confluent hypergeometric functions and chosen such that the matrix representation of the Dirac-Coulomb operator is tridiagonal. The wave equation results in a three-term recursion relation for the expansion coefficients of the wavefunction which is solved in terms of the Meixner-Pollaczek polynomials.  相似文献   

11.
We present a classification of three-qubit states based in their three-qubit and reduced two-qubit entanglements. For pure states these criteria can be easily implemented, and the different types can be related with sets of equivalence classes under local unitary operations. For mixed states characterization of full tripartite entanglement is not yet solved in general; some partial results will be presented here.  相似文献   

12.
Tunneling in a piecewise harmonic potential coupled to a harmonic oscillator is considered by means of the path integral technique. The reduced propagator for the tunneling particle is calculated explicitly and the tunneling splitting is found in semiclassical approximation. The result holds for arbitrary values of the parameters of the system. From this the adiabatic and antiadiabatic approximations are obtained as particular cases and compared with the results obtained differently. The limit of a strong interaction is also considered. It is found that for strong interaction or equivalently for the harmonic frequency tending to zero the preexponential factor in the tunneling splitting tends to zero which results in a suppression of tunneling. Implications of this result for tunneling in a more general potential are discussed.  相似文献   

13.
The formal solution of a general stargenvalue equation is presented, its properties studied and a geometrical interpretation given in terms of star-hypersurfaces in quantum phase space. Our approach deals with discrete and continuous spectra in a unified fashion and includes a systematic treatment of nondiagonal stargenfunctions. The formalism is used to obtain a complete formal solution of Wigner quantum mechanics in the Heisenberg picture and to write a general formula for the stargenfunctions of Hamiltonians quadratic in the phase space variables in arbitrary dimension. A variety of systems is then used to illustrate the former results.  相似文献   

14.
15.
We address the question of which phase space functionals might represent a quantum state. We derive necessary and sufficient conditions for both pure and mixed phase space quantum states. From the pure state quantum condition we obtain a formula for the momentum correlations of arbitrary order and derive explicit expressions for the wave functions in terms of time-dependent and independent Wigner functions. We show that the pure state quantum condition is preserved by the Moyal (but not by the classical Liouville) time evolution and is consistent with a generic stargenvalue equation. As a by-product Baker's converse construction is generalized both to an arbitrary stargenvalue equation, associated to a generic phase space symbol, as well as to the time-dependent case. These results are properly extended to the mixed state quantum condition, which is proved to imply the Heisenberg uncertainty relations. Globally, this formalism yields the complete characterization of the kinematical structure of Wigner quantum mechanics. The previous results are then succinctly generalized for various quasi-distributions. Finally, the formalism is illustrated through the simple examples of the harmonic oscillator and the free Gaussian wave packet. As a by-product, we obtain in the former example an integral representation of the Hermite polynomials.  相似文献   

16.
17.
Using the notion of symplectic structure and Weyl (or star) product of non-commutative geometry, we construct unitary representations for the Galilei group and show how to rewrite the Schrödinger equation in phase space. This approach gives rise to a new procedure to derive Wigner functions without the use of the Liouville-von Neumann equation. Applications are presented by deriving the states of linear and nonlinear oscillators in terms of amplitudes of probability in phase space. The notion of coherent states is also discussed in this context.  相似文献   

18.
In this paper we consider a neutral spinning particle in interaction with a linear increasing rotating magnetic field and a scalar harmonic potential using the path integral formalism. The Pauli matrices which describe the spin dynamics are replaced by two fermionic oscillators via the Schwinger’s model. The calculations are carried out explicitly using fermionic exterior current sources. The problem is then reduced to that of a spinning forced harmonic particle whose spin is coupled to exterior derivative current sources. The result of the propagator is given as a series which is exactly summed up by means of the Laplace transformation and the use of some recurrence formula of the oscillator wave functions. The energy spectrum and the corresponding wave functions are also deduced.  相似文献   

19.
An approximate solution of the D-dimensional Schrödinger equation with the modified Pöschl-Teller potential is obtained with an approximation of the centrifugal term. Solution to the corresponding hyper-radial equation is given using the conventional Nikiforov-Uvarov method. The normalization constants for the Pöschl-Teller potential are also computed. The expectation values of -2> and are also obtained using the Feynman-Hellmann theorem.  相似文献   

20.
The effect of the built-in supersymmetric quantum mechanical language on the spectrum of the (1+1)-Dirac equation, with position-dependent mass (PDM) and complexified Lorentz scalar interactions, is re-emphasized. The signature of the “quasi-parity” on the Dirac particles’ spectra is also studied. A Dirac particle with PDM and complexified scalar interactions of the form S(z)=S(xib) (an inversely linear plus linear, leading to a symmetric oscillator model), and S(x)=S r (x)+iS i (x) (a -symmetric Scarf II model) are considered. Moreover, a first-order intertwining differential operator and an η-weak-pseudo-Hermiticity generator are presented and a complexified -symmetric periodic-type model is used as an illustrative example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号