首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The alternating-bond mixed spin-1/2 and spin-1 Ising chain with both longitudinal and transverse single-ion anisotropies are solved exactly by means of a mapping of the spin-1/2 transverse Ising chain and the Jordan-Wigner transformation. The ground state quantities are strongly dependent on the model Hamiltonian parameters J1, J2, Dx and Dz. We obtain the quasi-particles' spectra Λk, the dimerization gap Δd, the minimal energy Δ0 for exciting a fermion quasi-particle, the minimal energy gap Δh for exciting a hole and the ground state energy Eg. The phase diagram of the ground state is also given. The results show that the alternating bond just quantitatively changes the ground state properties; no matter the nearest-neighbor exchange interactions J1 and J2 are equal or not, when Dz≥0 for any finite value of Dx, there is no quantum critical point and the ground state is always in a spin ordered phase.  相似文献   

2.
The mixed spin-1/2 and spin-1 Ising chain with both longitudinal and transverse single-ion anisotropies is solved exactly by means of a mapping to the spin-1/2 Ising chains with alternating transverse fields and the Jordan-Wigner transformation. Within this scheme, the thermodynamic quantities of this model are rigorously determined by a recursion formula derived for the partition function based on the reduced spin-1/2 transverse Ising model. The corresponding thermodynamic properties are calculated and discussed.  相似文献   

3.
The phase diagram of mixed spin-3/2 and spin-2 Ising ferromagnetic model with different single-ion anisotropies is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. Global phase diagrams are obtained in the temperature-anisotropy plane. In particular, by changing values of the single-ion anisotropies, several different types of phase diagrams of first-order transition between two ordered phases, are studied in detail. A variety of multicritical points such as tricritical points, isolated critical points, and triple points are obtained.  相似文献   

4.
5.
The phase diagrams of the spin-1 transverse Ising model with the presence of a crystal field is investigated by using an effective-field theory (EFT). We give a method to calculate the Gibbs free energy numerically at finite temperature within the EFT. The first-order transition lines are obtained by comparing the Gibbs free energy. The phase diagrams and the Gibbs free energy are also compared with those given using the mean-field theory (MFT).  相似文献   

6.
Ya-Qiu Liang  Guo-Zhu Wei  Feng-Cai Ma 《Physica A》2008,387(18):4513-4518
The mixed spin- 1/2 and spin- 3/2 transverse Ising model in a longitudinal magnetic field is studied within the framework of the effective-field theory with correlations. In this approach the effective-field equations are derived by using a probability distribution method based on the generalized but approximated van der Waerden identities. The total longitudinal and transverse magnetizations, the transverse susceptibility and longitudinal susceptibility and the critical temperatures are obtained. We find a number of interesting phenomena in these quantities, due to the applied transverse field and the longitudinal field.  相似文献   

7.
The ground-state magnetic properties of the spin-2 transverse Ising model with a longitudinal crystal field are studied within the framework of mean-field theory (MFT) and effective-field theory (EFT), respectively. The phase diagrams and magnetization curves are examined in detail. It is found that the system exhibits a tricritical behavior in the ground-state phase diagrams. Some interesting phenomena have been found, especially the first-order phase transition from one ordered phase to the other ordered phase, which is due to the high spin. The spin correlation has important effect on the magnetic properties of the system. We also find that the ground-state phase diagrams of the spin-2 transverse Ising model are very different from those of the spin-3/2 transverse Ising model.  相似文献   

8.
We present the renormalization group (RG) flow diagram of a spin-half antiferromagnetic chain with magnetic impurity and one altered link. In this two parameters (competing interactions) model, one can find the complex phase diagram with many interesting fixed points. There is no evidence of intermediate stable fixed point in weak coupling phase. It may arise at the strong coupling phase. Depending on the strength of couplings the phases correspond either to a decoupled spin with Curie law behavior or a logarithmically diverging impurity susceptibility as in the two channel Kondo problem.  相似文献   

9.
10.
We present a study, within a mean-field approach, of the kinetics of a mixed ferrimagnetic model on a square lattice in which two interpenetrating square sublattices have spins that can take two values, , alternated with spins that can take the four values, . We use the Glauber-type stochastic dynamics to describe the time evolution of the system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field. The nature (continuous and discontinuous) of transition is characterized by studying the thermal behaviors of average order parameters in a period. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude (h) and reduced temperature (T) plane, and in the reduced temperature and interaction parameter planes, namely in the (h, T) and (d, T) planes, d is the reduced crystal-field interaction. The phase diagrams always exhibit a tricritical point in (h, T) plane, but do not exhibit in the (d, T) plane for low values of h. The dynamic multicritical point or dynamic critical end point exist in the (d, T) plane for low values of h. Moreover, phase diagrams contain paramagnetic (p), ferromagnetic (f), ferrimagnetic (i) phases, two coexistence or mixed phase regions, (f+p) and (i+p), that strongly depend on interaction parameters.  相似文献   

11.
The dimerized spin-1 Ising chain with both longitude and transverse single-ion anisotropies Dz and Dx is solved exactly by means of a mapping to the spin- Ising chain with the alternating transverse fields and the Jordan-Wigner transformation. The analytical expressions of the quasi-particles’ spectra Λk, the minimal energy gap Δ0 for exciting a fermion quasi-particle, the minimal energy gap Δh for exciting a hole, and the ground-state energy Eg are obtained. The phase diagram of the ground state is also given. The results show that the system exhibits a series of quantum phase transitions depending on the dimerization strength of the crystal fields, while the quantum critical points are determined exactly.  相似文献   

12.
13.
The energy gap of the 1D AF-Heisenberg model in the presence of both uniform (H) and staggered (h) magnetic fields is investigated using the exact diagonalization technique. The opening of the gap in the presence of a staggered field is found to scale with hν, where ν=ν(H) is the critical exponent, and depends on the uniform field. With respect to the range of the staggered magnetic field, two regimes are identified through which the dependence of the real critical exponent ν(H) on H can be calculated numerically. Our numerical results are in good agreement with the results obtained by other theoretical approaches.  相似文献   

14.
We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.  相似文献   

15.
Within the effective field theory (EFT), the critical properties of the biaxial Ising model with both longitudinal crystal field and transverse dilution crystal field are investigated for a simple cubic lattice. The tricritical point (TCP) and its trajectory are discussed in T-Dx and T-Dz space. A new phenomenon of two TCPs is found in T-Dx space. There exists a second-order line between two first-order lines, separated by two TCPs. The change of dilution concentration leads to a complex relation of the trajectory of the TCP. The degenerate patterns at the ground state appear by changing the longitudinal crystal field. The range of the ordered phase for transition lines labelled as a positive or (negative) value of Dx/J becomes larger or (smaller) with the decrease of tx in T-Dz space. Some results have not been revealed in previous works.  相似文献   

16.
Phase diagrams and magnetization curves of a diluted spin-3/2 transverse Ising model in a random field on honeycomb lattices are investigated by the use of an effective-field theory with correlations. The tricritical point is found in the system, in contrast to the corresponding spin-1/2 Ising counterpart. The possible reentrant phenomena displayed by the system due to the competition effects that occur for appropriate ranges of the random and transverse fields are investigated.  相似文献   

17.
We give an exact formulation of a mixed spin-1 and spin-3/2 Ising model on the Bethe lattice, which shows ferrimagnetism and compensation points. The model incorporates antiferromagnetic nearest-neighbor interaction which is relevant to describe ferrimagnetism. The influence of two sublattice crystal fields, DA and DB, on compensation points is studied in detail. For certain crystal-field values, the single or double compensation temperature may occur in the present system.  相似文献   

18.
Xiao-Juan Yuan  Zhen-Bo Xu 《Physica A》2010,389(2):242-248
The dynamics of the one-dimensional random transverse Ising model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions is studied in the high-temperature limit by the method of recurrence relations. Both the time-dependent transverse correlation function and the corresponding spectral density are calculated for two typical disordered states. We find that for the case of bimodal disorder the dynamics of the system undergoes a crossover from a collective-mode behavior to a central-peak one and for the case of Gaussian disorder the dynamics is complex. For both cases, it is found that the central-peak behavior becomes more obvious and the collective-mode behavior becomes weaker as Ki increase, especially when Ki>Ji/2 (Ji and Ki are the exchange couplings of the NN and NNN interactions, respectively). However, the effects are small when the NNN interactions are weak (Ki<Ji/2).  相似文献   

19.
The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins σ=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature Tabs and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i1, i2, i3) phases, and three coexistence or mixed phase regions, namely i1+p, i2+p and i3+p mixed phases that strongly depend on interaction parameters.  相似文献   

20.
A theoretical study of a mixed spin-1/2 and spin-3/2 Ising system with independent transverse fields is presented using an effective field method within the framework of a single-site cluster theory. In this approach the effective field equations are derived using a probability distribution method based on the use of generalized van der Waerden identities accounting exactly for the single-site kinematic relations. The effect of the transverse fields on the critical behaviour is studied. The thermal dependence of the longitudinal and transverse components of the magnetization and its higher moments is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号