首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
By the method of finite difference, the anisotropic spin splitting of the AlxGa1-xAs/GaAs/Aly Ga1-yAs/AlxGal-xAs step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field. We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field. The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin. The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.  相似文献   

2.
Xiang Hao 《Physics letters. A》2008,372(7):1119-1122
Correct swap action can be realized via the control of the anisotropic Heisenberg interaction in solid-state quantum systems. The conditions of performing a swap are derived by the dynamics of arbitrary bipartite pure state. It is found that swap errors can be eliminated in the presence of symmetric anisotropy. In realistic quantum computers with unavoidable fluctuations, the gate fidelity of swap action is estimated. The scheme of quantum computation via the anisotropic Heisenberg interaction is implemented in a one-dimensional quantum dots. The slanting and static magnetic field can be used to adjust the anisotropy.  相似文献   

3.
The Hall current flowing across an arbitrary curve connecting any two points selected in a high mobility, dissipation free, integer quantum Hall system shows quantised nature with respect to the potential difference between the two points. The Hall conductance can therefore be defined between any two points in the sample. For a given system, the behaviour of this Hall conductance depends on the potential difference between the two selected points only. The overall quantum Hall behaviour can be derived in a special case when the two points are selected at the Hall contacts.  相似文献   

4.
We investigate theoretically the spin-polarized electron transport for a wide-narrow-wide (WNW) quantum wire under the modulation of Rashba spin-orbit interaction (SOI). The influence of both the structure of the quantum wire and the interference between different pairs of subbands on the spin-polarized electron transport is taken into account simultaneously via the spin-resolved lattice Green function method. It is found that a very large vertical spin-polarized current can be generated by the SOI-induced effective magnetic field at the structure-induced Fano resonance even in the presence of strong disorder. Furthermore, the magnitude of the spin polarization can be tuned by the Rashba SOI strength and structural parameters. Those results may provide an effective way to design a spin filter device without containing any magnetic materials or applying a magnetic field.  相似文献   

5.
Deformation quantization is a powerful tool for quantizing theories with bosonic and fermionic degrees of freedom. The star products involved generate the mathematical structures which have recently been used in attempts to analyze the algebraic properties of quantum field theory. In the context of quantum mechanics they provide a quantization procedure for systems with either bosonic or fermionic degrees of freedom. We illustrate this procedure for a number of physical examples, including bosonic, fermionic, and supersymmetric oscillators. We show how non-relativistic and relativistic particles with spin can be naturally described in this framework.  相似文献   

6.
This paper generalises the theorem already obtained [Solid State Commun. 127 (2003) 505] for the high mobility, dissipationless, integer quantum Hall systems at T=0 K to the T>0 K situations. The results obtained are again suitable at both microscopic and macroscopic scales. In comparison [Solid State Commun. 127 (2003) 505], this generalised form gives a universal explicit expression for the Hall conductance σxy(μ,T) between any two points selected in such a system as a function of chemical potential and temperature. Further, thermal deviation Δσxy(μ,T) from the exact quantised values of σxy(μ,T) and the minimum slopes of Hall plateaux in the T>0 cases, observed already in experiments, are also derived in theory. Similar to those in the T=0 K case [Solid State Commun. 127 (2003) 505], the overall quantum Hall behaviour of the system can again be obtained from this theory by simply selecting two points on the two Hall contacts.  相似文献   

7.
Based on the nonequilibrium Green' function method, the spin-dependent Fano effect through parallel-coupled double quantum dots has been investigated by taking account of both Rashba spin-orbit interaction and intradot Coulomb interaction. It is shown that the quantum interference through the bonding, antibonding states and through their Coulomb blockade counterparts may result in two Breit-Wigner resonances and two Fano resonances in the conductance spectra. Moreover, the Fano lineshape of the two spin components can be modulated by Rashba spin-orbit interaction when the magnetic flux is switched on.  相似文献   

8.
A detailed analysis of the energy level structure of the six-fold coordinated Cr3+ ion in the chromium oxide Cr2O3 is performed using the exchange charge model of the crystal field theory. Parameters of the crystal field acting on the Cr3+ optical electrons are calculated from the crystal structure data for the [CrO6]9− impurity center. The energy levels obtained are compared with the experimental absorption spectra for the considered crystal; a good agreement with experimental data is demonstrated. One possible explanation for the ultraviolet p1 absorption band is proposed based on the results of crystal field calculations.  相似文献   

9.
High-resolution spectra of holmium-doped LiYF4 crystals at low temperatures were investigated. It was shown that weak lines observed near some main lines in the spectra belong to the Ho3+Ho3+ pair centers. These satellites can be explained by two types of pairs with the magnetic dipole coupling within each of them, provided that a change of the crystal field due to lattice distortion is taken into account.  相似文献   

10.
We have derived closed analytic expressions for the Green’s function of an electron in a two-dimensional electron gas threaded by a uniform perpendicular magnetic field, also in the presence of a uniform electric field and of a parabolic spatial confinement. A workable and powerful numerical procedure for the calculation of the Green’s functions for a large infinitely extended quantum wire is considered exploiting a lattice model for the wire, the tight-binding representation for the corresponding matrix Green’s function, and the Peierls phase factor in the Hamiltonian hopping matrix element to account for the magnetic field. The numerical evaluation of the Green’s function has been performed by means of the decimation-renormalization method, and quite satisfactorily compared with the analytic results worked out in this paper. As an example of the versatility of the numerical and analytic tools here presented, the peculiar semilocal character of the magnetic Green’s function is studied in detail because of its basic importance in determining magneto-transport properties in mesoscopic systems.  相似文献   

11.
We theoretically study the spatial behaviors of spin precessions modulated by an effective magnetic field in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field, we find some laws of spin precession in the system, by which we explain some previous phenomena of spin precession, and predict a controllable electron spin polarization wave in [001]-grown quantum wells. The shape of the wave, like water wave, mostly are ellipse-like or circle-like, and the wavelength is anisotropic in the quantum wells with two unequal coupling strengths of the Rashba and Dresselhaus interactions, and is isotropic in the quantum wells with only one spin orbit interaction.  相似文献   

12.
Two sets of crystal field (CF) parameters have been proposed for DyFe2Si2, none of which could provide a simultaneous explanation of the available experimental data, particularly at low temperatures (below 100 K). The set derived from magnetic studies could not even explain the thermal variation of the magnetic specific heat reported in the same work. Although the set of CF parameters, obtained from a fit to the Mossbauer spectra, could provide a fairly good explanation of the thermal variation of the magnetic susceptibilities along the c-axis, it could not explain the observed thermal variation of other reported experimental findings. In the present work, an appraisal of the CF parameters proposed earlier has been done and a set of CF parameters has been derived, which provide a simultaneous explanation of all the available experimental data. The effect of substitution of Ge for Si on the magnetic properties and the magnetic specific heat of DyFe2Si2 has been studied in the framework of one electron crystal field model. The inelastic neutron scattering studies and EPR measurements are required to check the predicted Stark energies and the paramagnetic resonance g-values.  相似文献   

13.
In this paper, a Spin-Hamiltonian theory of orbital near-degenerate state in tetragonal field is presented. For orbital doublet 2E, which is an orbital degenerate state in the cubic field and is a near-degenerate state in the tetragonal field, we obtain the cubic invariant form and the tetragonal invariant form of the Spin-Hamiltonian. In case of near-degeneracy (tetragonal splitting is very small) two additional g-factors are introduced to investigate Zeeman-splitting for tetragonal field. The two additional g-factors g2z and g2xy describe the magnetic interest between A1g and B1g states for a parallel magnetic field with z-axis and a perpendicular magnetic field with z-axis, respectively. The theory is based on the time-reversal invariant and the point-group symmetry invariant. The theoretical method can also be used for other orbital degenerate states 2S+1Γ including and Γ=T1 or T2 and can be used for other point-group symmetry.  相似文献   

14.
The Zeeman effect on the crystal electric field (CEF) magnetic susceptibility in 4f-electron singlet ground state (SGS) systems is studied analytically in the framework of the molecular-field model and experimentally by measuring the magnetic susceptibility of SGS compound PrNi5. The most striking result of the analysis is the shift of the zero-field magnetic susceptibility maximum to lower temperatures in magnetic field. This thoroughly CEF effect is a direct consequence of the convergence of the SGS and the low lying Zeeman branch of the first excited state in an applied magnetic field. The observed shift of the susceptibility maximum from 14 K to 9 K in polycrystalline PrNi5 by applying a magnetic field of 9T confirms the foregone conclusion.  相似文献   

15.
High-resolution Fourier transform absorption and luminescence spectroscopy reveal axial and rhombic zero-field splittings of the spin-forbidden electronic origins of V3+ in NaMgAl(ox)3·9H2O (ox=oxalate) single crystals below 25 K. The temperature dependence of the integrated absorption of the split features display behavior consistent with a Boltzmann distribution within the zero-field split 3Â2 ground state of V3+. Weak luminescence is observed in the near-IR from the lowest energy spin-forbidden transition with a luminescence lifetime of less than 0.5 μs at 11 K and an estimated quantum efficiency of the order of 10−5.  相似文献   

16.
The lifetime of the resonance states of an electron interacting with a zero-range potential in the presence of crossed magnetic and electric fields is studied for the case where the electron is confined in the direction of the magnetic field by a parabolic quantum well. It is shown that long-lived electric field-induced resonances exist in this system even when the zero-range potential does not support any field-free bound state. The relationship of these resonances with the Landau states localized near the point interaction is discussed.  相似文献   

17.
A theoretical method for investigating the inter-relation between the electronic and molecular structures of 3d^3 configuration ions in a tetragonal ligand field is established on the basis of the 120 × 120 complete energy matrices. Using this method, the local structure parameters of two tetragonal Cr^3+ centers in the NH4 Cl:Cr^3+ system are determined, Furthermore, the relations between the molecular symmetry and the ligand field symmetry are discussed.  相似文献   

18.
By diagonalizing a set of complete energy matrices constructed for a d5 configuration ion in a trigonal ligand field, a reasonable interpretation is obtained for the EPR zero-field splitting of Mn2+ ions located at octahedral sites in yttrium aluminum garnet. It is shown that the local lattice structure around an octahedrally coordinated Mn2+ center has an expansion distortion, which may be attributed to the fact that the radius of Mn2+ ion is larger than that of Al3+ ion, and the Mn2+ ion will push the oxygen ligands outwards. Simultaneously, the local lattice structure distortion parameters ΔR=0.1825-0.2158 A and Δθ=1.220°-1.315° for the octahedral Mn2+ center in the crystal are determined, respectively. Meanwhile, we also demonstrated that the empirical impurity-ligand distance is not suitable for the YAG:Mn2+ system which has been approximately taken in previous works.  相似文献   

19.
We study magnetotransport properties of graphite and rhombohedral bismuth samples and found that in both materials applied magnetic field induces the metal-insulator- (MIT) and reentrant insulator-metal-type (IMT) transformations. The corresponding transition boundaries plotted on the magnetic field-temperature (B − T) plane nearly coincide for these semimetals and can be best described by power laws T ∼ (B − Bc)κ, where Bc is a critical field at T = 0 and κ = 0.45 ± 0.05. We show that insulator-metal-insulator (I-M-I) transformations take place in the Landau level quantization regime and illustrate how the IMT in quasi-3D graphite transforms into a cascade of I-M-I transitions, related to the quantum Hall effect in quasi-2D graphite samples. We discuss the possible coupling of superconducting and excitonic correlations with the observed phenomena, as well as signatures of quantum phase transitions associated with the M-I and I-M transformations.  相似文献   

20.
We show that the efficiency of manipulating electron spins in semiconductor quantum wells can be enhanced by tuning strain strengths. The combined effects of intrinsic and strain-induced spinorbit couplings vary for different quantum wells, which provide an alternative route to understand the experimental phenomena brought in by the strain. The contribution to the electron-dipole-spin-resonance intensity induced by the strain can be changed through adjusting the direction of the ac electric field in the x-y plane of the quantum well and tuning the strain strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号