共查询到20条相似文献,搜索用时 15 毫秒
1.
A deformed boson algebra is naturally introduced from studying quantum mechanics on noncommutative phase space in which both positions and momenta are noncommuting each other. Based on this algebra, corresponding intrinsic noncommutative coherent and squeezed state representations are constructed, and variances of single- and two-mode quadrature operators on these states are evaluated. The result indicates that in order to maintain Heisenberg's uncertainty relations, a restriction between the noncommutative parameters is required. 相似文献
2.
Pulak Ranjan Giri 《Physics letters. A》2008,372(31):5123-5125
We study non-commutative quantum mechanics and exploit the non-commutative parameter as a scale for a scale symmetric system. The Hamiltonian in non-commutative space allows an unusual bound state at the threshold of the energy, E=0. The so(2,1) algebra for the system is also studied in non-commutative space. 相似文献
3.
A semiclassical constrained Hamiltonian system which was established to study dynamical systems of matrix valued non-Abelian gauge fields is employed to formulate spin Hall effect in noncommuting coordinates at the first order in the constant noncommutativity parameter θ. The method is first illustrated by studying the Hall effect on the noncommutative plane in a gauge independent fashion. Then, the Drude model type and the Hall effect type formulations of spin Hall effect are considered in noncommuting coordinates and θ deformed spin Hall conductivities which they provide are acquired. It is shown that by adjusting θ different formulations of spin Hall conductivity are accomplished. Hence, the noncommutative theory can be envisaged as an effective theory which unifies different approaches to similar physical phenomena. 相似文献
4.
Newton-Leibniz integration rule only applies to commuting functions of continuum variables, while operators made of Dirac’s symbols (ket versus bra, e.g., |q〉〈q| of continuous parameter q) in quantum mechanics are usually not commutative. Therefore, integrations over the operators of type |〉〈| cannot be directly performed by Newton-Leibniz rule. We invented an innovative technique of integration within an ordered product (IWOP) of operators that made the integration of non-commutative operators possible. The IWOP technique thus bridges this mathematical gap between classical mechanics and quantum mechanics, and further reveals the beauty and elegance of Dirac’s symbolic method and transformation theory. Various applications of the IWOP technique, including constructing the entangled state representations and their applications, are presented. 相似文献
5.
We derive the Hu-Paz-Zhang master equation for a Brownian particle linearly coupled to a bath of harmonic oscillators on the plane with spatial noncommutativity. The results obtained are exact to all orders in the noncommutative parameter. As a by-product we derive some miscellaneous results such as the equilibrium Wigner distribution for the reservoir of noncommutative oscillators, the weak coupling limit of the master equation and a set of sufficient conditions for strict purity decrease of the Brownian particle. Finally, we consider a high-temperature Ohmic model and obtain an estimate for the time scale of the transition from noncommutative to ordinary quantum mechanics. This scale is considerably smaller than the decoherence scale. 相似文献
6.
The He-McKellar-Wilkens (HMW) effect in non-commutative (NC) space is studied. By solving the Dirac equations on NC space, we obtain topological HMW phase in NC space where the additional terms related to the space non-commutativity are given explicitly. 相似文献
7.
A Fock--Darwin system in noncommutative quantum mechanics is studied. By constructing Heisenberg algebra we obtain the levels on noncommutative space and noncommutative phase space, and give the corrections to the results in usual quantum mechanics. Moreover, to search the difference among the three spaces, the degeneracy is analysed by two ways, the valueof ω/ωc and certain algebra realization (SU(2)and SU(1,1)), and some interesting properties in the magnetic field limit are exhibited, such as totally different degeneracy and magic number distribution for the given frequency or mass of a system in strong magnetic field. 相似文献
8.
We study the quantum Hall (QH) effect for an electron moving in a plane whose coordinates and momenta are noncommuting under the influence of uniform external magnetic and electric fields. After solving the time independent Schrödinger equation both on a noncommutative space (NCS) and a noncommutative phase space (NCPS), we obtain the energy eigenvalues and eigenfunctions of the relevant Hamiltonian. We derive the electric current whose expectation value gives the QH effect both on a NCS and a NCPS. 相似文献
9.
V.S. Popov 《Physics letters. A》2009,373(22):1925-1927
Generating functions and sum rules are discussed for transition probabilities between quantum oscillator eigenstates with time-dependent parameters. 相似文献
10.
V.S. Popov 《Physics letters. A》2008,372(32):5274-5275
New applications of Feynman disentangling method in quantum mechanics are studied and the time-dependent singular oscillator problem is solved in this approach. The important role of representation group theory is discussed in this context. 相似文献
11.
Discussion on Maximally Entangled States of Two Coupled Two-Level Particles by Coherent State Approximation
下载免费PDF全文

We analyse the best condition for generating the maximally entangled states of the system containing two coupled two-level particles by the coherent approximation method beyond rotating wave approximation. It is found that the maximally entangled states are obtained when the detuning v and the strength Ω of driving laser satisfy the condition v/Ω= 2.5. The maximum average probability of entangled state pamax(v, Ω) has the best stability relying on v and Ω when vu ≈2Ω. 相似文献
12.
C. Wetterich 《Annals of Physics》2010,325(7):1359-1389
Quantum particles can be obtained from a classical probability distribution in phase space by a suitable coarse graining, whereby simultaneous classical information about position and momentum can be lost. For a suitable time evolution of the classical probabilities and choice of observables all features of a quantum particle in a potential follow from classical statistics. This includes interference, tunneling and the uncertainty relation. 相似文献
13.
D. Agboola 《中国物理快报》2010,27(4)
An approximate solution of the D-dimensional Schrödinger equation with the modified Pöschl-Teller potential is obtained with an approximation of the centrifugal term. Solution to the corresponding hyper-radial equation is given using the conventional Nikiforov-Uvarov method. The normalization constants for the Pöschl-Teller potential are also computed. The expectation values of -2> and are also obtained using the Feynman-Hellmann theorem. 相似文献
14.
The renormalization of the attractive 1/r2 potential has recently been studied using a variety of regulators. In particular, it was shown that renormalization with a square well in position space allows multiple solutions for the depth of the square well, including, but not requiring a renormalization group limit cycle. Here, we consider the renormalization of the 1/r2 potential in momentum space. We regulate the problem with a momentum cutoff and absorb the cutoff dependence using a momentum-independent counterterm potential. The strength of this counterterm is uniquely determined and runs on a limit cycle. We also calculate the bound state spectrum and scattering observables, emphasizing the manifestation of the limit cycle in these observables. 相似文献
15.
We study the effect of Kerr medium on the intrinsic decoherence of a system which consists of two two-level atoms and a optical cavity. The entanglement of the system is calculated by making use of concurrence. Our results show that the intrinsic decoherence is very sensitive to the nonlinear coupling constant of Kerr medium. Both the oscillation period and the amplitude of the concurrence increase with the increasing nonlinear coupling constant. 相似文献
16.
We show that the phase transition from the decelerating universe to the accelerating universe, which is of relevance to the cosmological coincidence problem, is possible in the semiclassically quantized two-dimensional dilaton gravity by taking into account the noncommutative field variables during the finite time. Initially, the quantum-mechanically induced energy from the noncommutativity among the fields makes the early universe decelerate and subsequently the universe is accelerating because the dilaton driven cosmology becomes dominant later. 相似文献
17.
M. T. Chefrour 《中国物理快报》2007,24(8):2173-2176
The MIC-Kepler system is studied via the Milshtein Strakhovenko variant of the so(2,1) Lie algebra. Green's function is constructed in spherical coordinates, with the help of the Kustaanheimo Stiefel variables and the generators of the S0(2,1) group. The energy spectrum and the normalized wavefunctions of the bound states are obtained. 相似文献
18.
The trigonometric and hyperbolic Pöschl-Teller potentials are dealt with from the point of view of classical and quantum mechanics. We show that there is a natural correspondence between the algebraic structure of these two approaches for both kind of potentials. Then, the coherent states are constructed and the appropriate classical variables are compared with the expected values of their corresponding quantum operators. 相似文献
19.
J.C. Barba 《Physics letters. A》2008,372(38):5951-5954
We describe a class of the singular solutions to the multicomponent analogs of the Lamé equation, arising as equations of motion of the elliptic Calogero-Moser systems of particles carrying spin 1/2. At special value of the coupling constant we propose the ansatz which allows one to get meromorphic solutions with two arbitrary parameters. They are quantized upon the requirement of the regularity of the wave function on the hyperplanes at which particles meet and imposing periodic boundary conditions. We find also the extra integrals of motion for three-particle systems which commute with the Hamiltonian for arbitrary values of the coupling constant. 相似文献
20.
Two known two-dimensional SUSY quantum mechanical constructions—the direct generalization of SUSY with first-order supercharges and higher-order SUSY with second-order supercharges—are combined for a class of 2-dim quantum models, which are not amenable to separation of variables. The appropriate classical limit of quantum systems allows us to construct SUSY-extensions of original classical scalar Hamiltonians. Special emphasis is placed on the symmetry properties of the models thus obtained—the explicit expressions of quantum symmetry operators and of classical integrals of motion are given for all (scalar and matrix) components of SUSY-extensions. Using Grassmanian variables, the symmetry operators and classical integrals of motion are written in a unique form for the whole Superhamiltonian. The links of the approach to the classical Hamilton-Jacobi method for related “flipped” potentials are established. 相似文献