首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generalized (2+1)-dimensional KP, cKP and mKP are decomposed into the known (1+1)-dimensional soliton equations. Then, we show that the (1+1)-dimensional soliton equations give rise to the explicit soliton solutions of the generalized KP, cKP and mKP.  相似文献   

2.
F.S. Amaral 《Physica A》2007,385(1):137-147
We investigate arbitrary stochastic partial differential equations subject to translation invariant and temporally white noise correlations from a nonperturbative framework. The method that we expose first casts the stochastic equations into a functional integral form, then it makes use of the Gaussian effective potential approach, which is an useful tool for describing symmetry breaking. We apply this method to the Kardar-Parisi-Zhang equation and find that the system exhibits spontaneous symmetry breaking in and (3+1) Euclidean dimensions, providing insight into the evolution of the system configuration due to the presence of noise correlations. A simple and systematic approach to the renormalization, without explicit regularization, is employed.  相似文献   

3.
The KPII equation is an integrable nonlinear PDE in 2+1 dimensions (two spatial and one temporal), which arises in several physical circumstances, including fluid mechanics, where it describes waves in shallow water. It provides a multidimensional generalisation of the renowned KdV equation. In this work, we employ a novel approach recently introduced by one of the authors in connection with the Davey-Stewartson equation (Fokas (2009) [13]), in order to analyse the initial-boundary value problem for the KPII equation formulated on the half-plane. The analysis makes crucial use of the so-called d-bar formalism, as well as of the so-called global relation. A novel feature of boundary as opposed to initial value problems in 2+1 is that the d-bar formalism now involves a function in the complex plane which is discontinuous across the real axis.  相似文献   

4.
We study some analytical properties of the solutions of the non-perturbative renormalization group flow equations for a scalar field theory with Z2 symmetry in the ordered phase, i.e. at temperatures below the critical temperature. The study is made in the framework of the local potential approximation. We show that the required physical discontinuity of the magnetic susceptibility χ(M) at MM0 (M0 spontaneous magnetization) is reproduced only if the cut-off function which separates high and low energy modes satisfies to some restrictive explicit mathematical conditions; we stress that these conditions are not satisfied by a sharp cut-off in dimensions of space d<4.By generalizing a method proposed earlier by Bonanno and Lacagnina [Nucl. Phys. B 693 (2004) 36] to any kind of cut-off we propose to solve numerically the renormalization group flow equations for the threshold functions rather than for the local potential. It yields an algorithm sufficiently robust and precise to extract universal as well as non-universal quantities from numerical experiments at any temperature, in particular at sub-critical temperatures in the ordered phase. Numerical results obtained for the φ4 potential with three different cut-off functions are reported and compared. The data confirm our theoretical predictions concerning the analytical behavior of χ(M) at MM0.Fixed point solutions of the adimensioned renormalization group flow equations are also obtained in the same vein, that is by solving the fixed points equations and the associated eigenvalue problem for the threshold functions rather than for the potential. We report high precision data for the odd and even spectra of critical exponents for different cut-offs obtained in this way.  相似文献   

5.
This Letter deals with compact and noncompact solutions for nonlinear evolution equations with time-fractional derivatives. We present a reliable approach of the homotopy perturbation method to handle nonlinear fractional evolution equations. The validity of the approach is verified through illustrative examples. New exact solitary wave and compacton solutions are developed. The proposed technique could lead to a promising approach for a wide class of nonlinear fractional evolution equations.  相似文献   

6.
Solutions of the space-time fractional Cattaneo diffusion equation   总被引:1,自引:0,他引:1  
Haitao Qi  Xiaoyun Jiang 《Physica A》2011,390(11):1876-1883
The object of this paper is to present the exact solution of the fractional Cattaneo equation for describing anomalous diffusion. The classical Cattaneo model has been generalised to the space-time fractional Cattaneo model. The method of the joint Laplace and Fourier transform is used in deriving the solution. The solutions of the fractional Cattaneo equation are obtained under integral and series forms in terms of the H-functions. Finally, the fractional order moments are also investigated.  相似文献   

7.
Using extended homogenous balance method, we obtain Bäcklund transformation (BT) and a linear partial differential equation of higher-order Broer-Kaup (HBK) system. As a result, multisoliton and single soliton and other exact solutions of (2+1)-dimensional HBK system are given. By analyzing single soliton solution, we get some dromion solutions.  相似文献   

8.
?smail Aslan 《Physics letters. A》2011,375(47):4214-4217
We analyze the discrete nonlinear Schrödinger equation with a saturable nonlinearity through the (G/G)-expansion method to present some improved results. Three types of analytic solutions with arbitrary parameters are constructed; hyperbolic, trigonometric, and rational which have not been explicitly computed before.  相似文献   

9.
We present direct measurements of the lifetime of the 4F5/2 and 2H(2)9/2 manifold in Nd3+:YLiF4, using a fluorescence pump-probe technique. The technique populates the 4F5/2 and 2H(2)9/2 manifold directly with a pump pulse. Via excited state absorption from this excited manifold, the 2F(2)5/2 manifold of Nd3+ is populated with a delayed probe pulse. The population in the 4F5/2 and 2H(2)9/2 manifold is monitored as a function of time by observing the change in integrated UV fluorescence from the 2F(2)5/2 manifold for each time delay between pump and probe pulses. The pump and probe beams come from the fundamental and second harmonic wavelengths of a femtosecond Ti:sapphire regenerative amplifier. The measured lifetime agrees well with the energy gap law, based on other nonradiative lifetime measurements from the literature for Nd3+:YLiF4.  相似文献   

10.
Colored tensor models generalize matrix models in higher dimensions. They admit a 1/N expansion dominated by spherical topologies and exhibit a critical behavior strongly reminiscent of matrix models. In this paper we generalize the colored tensor models to colored models with generic interaction, derive the Schwinger Dyson equations in the large N limit and analyze the associated algebra of constraints satisfied at leading order by the partition function. We show that the constraints form a Lie algebra (indexed by trees) yielding a generalization of the Virasoro algebra in arbitrary dimensions.  相似文献   

11.
The time dependence of atomic level populations in evolving plasmas is studied using an eigenfunction expansion of the non-LTE rate equations. The work aims to develop understanding without the need for, and as an aid to, numerical solutions. The discussion is mostly limited to linear systems, especially those for optically thin plasmas, but the implicitly non-linear case of non-LTE radiative transfer is briefly discussed. Eigenvalue spectra for typical atomic systems are examined using results compiled by Hearon. Diagonal dominance and sign symmetry of rate matrices show that just one eigenvalue is zero (corresponding to the equilibrium state), that the remaining eigenvalues have negative real parts, and that oscillations, if any, are necessarily damped. Gershgorin's theorems are used to show that many eigenvalues are determined by the radiative lifetimes of certain levels, because of diagonal dominance. With other properties, this demonstrates the existence of both “slow” and “fast” time-scales, where the “slow” evolution is controlled by properties of meta-stable levels. It is shown that, when collisions are present, Rydberg states contribute only “fast” eigenvalues. This justifies use of the quasi-static approximation, in which atoms containing just meta-stable levels can suffice to determine the atomic evolution on time-scales long compared with typical radiative lifetimes. Analytic solutions for two- and three-level atoms are used to examine the basis of earlier intuitive ideas, such as the “ionizing plasma” approximation. The power and limitations of Gershgorin's theorems are examined through examples taken from the solar atmosphere. The methods should help in the planning and interpretation of both experimental and numerical experiments in which atomic evolution is important. While the examples are astrophysical, the methods and results are applicable to plasmas in general.  相似文献   

12.
We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1, then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, in-cluding the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations.  相似文献   

13.
Self-organized magnetic nanoparticles are obtained through selective silicidation of cobalt using a silicon substrate pre-structured with tri-dimensional gold islands as template. On the step bunches array of a vicinal Si(1 1 1) surface, gold deposition results in the formation of nanodroplets aligned along the step bunches. A subsequent cobalt deposition is performed onto this gold islands-covered Si surface, with two silicidation processes investigated: reactive deposition (RD) and solid phase reaction (SPR). The cobalt is converted into a non-magnetic silicide film except where the surface is locally masked by the gold islands, giving rise to cobalt nanomagnets which can be capped by a gold layer. A scanning tunneling microscopy comparative study of RD and SPR processes demonstrates that the former induces strong surface morphology changes while the latter preserves the pristine islands. Magnetic measurements performed with alternating gradient force magnetometry at room temperature are used to demonstrate the presence of ferromagnetic cobalt nanoparticles on SPR-processed samples. These nanomagnets show a clear in-plane anisotropy behavior.  相似文献   

14.
We study planar waves in a circulating, draining fluid flow, which: (i) exhibit an analogue of the Aharonov-Bohm (AB) effect in Quantum Mechanics; (ii) obey a Klein-Gordon equation on an ‘effective spacetime’ which resembles the Kerr spacetime of General Relativity; and (iii) may be observed in the laboratory using gravity waves in a shallow basin. We describe a modified AB effect which depends on two dimensionless parameters, associated with the circulation α and draining β rates; we call this the ‘αβ effect’. We show that the αβ effect is inherently asymmetric even in the low-frequency limit, and that it leads to novel interference patterns which carry the signature of both rotation and absorption.  相似文献   

15.
More than 30 years ago [H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Comm. 578 (1977); S. Etemad, A.J. Heeger, Ann. Rev. Phys. Chem. 33 (1982) 443] it was discovered that doped trans-polyacetylene (CH)x, a one-dimensional (1D) conjugated polymer, exhibits electrical conductivity. In this work we show that an asymmetrically doped 1D trans-polymer has non-conventional properties, as compared to symmetrically doped systems. Depending on the level of asymmetry between the chemical potentials of the two involved fermionic species, the polymer can be in a partially or fully spin polarized state. Some possible experimental consequences of doped 1D trans-polymers used as 1D organic polarized conductors are discussed.  相似文献   

16.
By applying the Lie group method, the (2+1)-dimensional breaking soliton equation is reduced to some (1+1)-dimensional nonlinear equations. Based upon some new explicit solutions of the (2+1)-dimensional breaking soliton equation are obtained.  相似文献   

17.
We analyse base-pair breathing in a DNA sequence of 12 base-pairs with a defective base at its centre. We use both all-atom molecular dynamics (MD) simulations and a system of stochastic differential equations (SDEs). In both cases, Fourier analysis of the trajectories reveals self-organised critical behaviour in the breathing of base-pairs. The Fourier Transforms (FTs) of the inter-base distances show power-law behaviour with gradients close to −1. The scale-invariant behaviour we have found provides evidence for the view that base-pair breathing corresponds to the nucleation stage of large-scale DNA opening (or ‘melting’) and that this process is a (second-order) phase transition. Although the random forces in our SDE system were introduced as white noise, FTs of the displacements exhibit pink noise, as do the displacements in the AMBER/MD simulations.  相似文献   

18.
We present in this paper a new 3D half-moment model for radiative transfer in a gray medium, called the model, which uses maximum entropy closure. This model is a generalization to 3D of the 1D version recently proposed in (J. Comp. Phys. 180 (2002) 584). The direction space Ω is divided into two pieces, Ω+ and Ω-, in a dynamical way by the plane perpendicular to the total radiative flux, and the half moments are defined from these subspaces. The model closure and the integrations of the radiative transfer equation performed on the moving Ω± spaces are detailed. 1D planar results, which have motivated the extension of the model of (J. Comp. Phys. 180 (2002) 584) to multi-dimensions, are shown. These results are very good. The model is thereafter derived for 3D spherically symmetric geometry, where the correctness of the non-trivial border terms can be checked. Two 3D spherically symmetric problems are numerically solved in order to show the accuracy of the closure and the role of the border terms. Once again, compared to the solution obtained with a ray tracing solver, results are very good. From the 3D half-moment model, a new moment model, called , is derived for the particular case of a 3D hot and opaque source radiating into a cold medium, for applications such as simulations of stellar atmospheres and fires. Two-dimensional numerical results are presented and compared to those obtained solving the RTE and with other moment models. They demonstrate the very good accuracy of the model, its good convergence properties, and better prediction compared to all other existing moment models in its domain of applicability.  相似文献   

19.
张焕萍  李彪  陈勇  黄菲 《中国物理 B》2010,19(2):20201-020201
By means of the reductive perturbation method, three types of generalized (2+1)-dimensional Kadomtsev--Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including the modified KP (mKP) equation, standard KP equation and cylindrical KP (cKP) equation. Then some solutions of generalized cKP and KP equations with certain conditions are given directly and a relationship between the generalized mKP equation and the mKP equation is established by the symmetry group direct method proposed by Lou et al. From the relationship and the solutions of the mKP equation, some solutions of the generalized mKP equation can be obtained. Furthermore, some approximate solutions of the baroclinic potential vorticity equation are derived from three types of generalized KP equations.  相似文献   

20.
Neutron scattering results on single crystals shed light on the static and dynamic properties of the superconductor () PuCoGa5 and its isostructural but antiferromagnetic () homologue NpCoGa5. By polarized neutron diffraction the magnetization density in the paramagnetic state of both compounds has been inferred. The microscopic magnetization of NpCoGa5 is consistent with the orbital and spin components of a localized Np3+ magnetic moment. In the case of PuCoGa5 the microscopic magnetization is small, temperature-independent and cannot be described as a localized Pu3+ magnetic moment. For NpCoGa5 a dynamic magnetic signal has been observed by three-axis spectroscopy in the antiferromagnetically ordered state. The magnetic signal is strongest at the antiferromagnetic zone center and an energy transfer of about 5 meV. Magnetic fluctuations persist at this position in the paramagnetic state. The dynamic response is similar to the dynamic response observed in other actinide intermetallic compounds. This supports the possibility that magnetic fluctuations could also be present in the paramagnetic superconductor PuCoGa5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号