首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
邢修三 《物理学报》2014,63(23):230201-230201
本文综述了作者的研究成果.近十年,作者将现有静态统计信息理论拓展至动态过程,建立了以表述动态信息演化规律的动态信息演化方程为核心的动态统计信息理论.基于服从随机性规律的动力学系统(如随机动力学系统和非平衡态统计物理系统)与遵守确定性规律的动力学系统(如电动力学系统)的态变量概率密度演化方程都可看成是其信息符号演化方程,推导出了动态信息(熵)演化方程.它们表明:对于服从随机性规律的动力学系统,动态信息密度随时间的变化率是由其在系统内部的态变量空间和传递过程的坐标空间的漂移、扩散和耗损三者引起的,而动态信息熵密度随时间的变化率则是由其在系统内部的态变量空间和传递过程的坐标空间的漂移、扩散和产生三者引起的.对于遵守确定性规律的动力学系统,动态信息(熵)演化方程与前者的相比,除动态信息(熵)密度在系统内部的态变量空间仅有漂移外,其余皆相同.信息和熵已与系统的状态和变化规律结合在一起,信息扩散和信息耗损同时存在.当空间噪声可略去时,将会出现信息波.若仅研究系统内部的信息变化,动态信息演化方程就约化为与表述上述动力学系统变化规律的动力学方程相对应的信息方程,它既可看成是表述动力学系统动态信息的演化规律,亦可看成是动力学系统的变化规律都可由信息方程表述.进而给出了漂移和扩散信息流公式、信息耗散率公式和信息熵产生率公式及动力学系统退化和进化的统一信息表述公式.得到了反映信息在传递过程中耗散特性的动态互信息公式和动态信道容量公式,它们在信道长度和信号传递速度之比趋于零的极限情况下变为现有的静态互信息公式和静态信道容量公式.所有这些新的理论公式和结果都是从动态信息演化方程统一推导出的.  相似文献   

2.
《Physics letters. A》1996,210(3):189-194
The refraction of active waves is analyzed for a stable—metastable reaction—diffusion system consisting of two regions with different diffusion coefficients. The equations governing the evolution of wavefronts are derived by means of an asymptotic perturbation method for boundary layers. These equations describe non-stationary refraction near the steady state regime. It is shown that the dynamics of wavefronts separates into that in the region near the boundary and that far from the boundary.  相似文献   

3.
基于从稀薄流到连续流的跨流域气体动理论统一算法(gas-kinetic unified algorithm,GKUA),通过数值求解考虑转动自由度激发的Boltzmann-Rykov模型方程,得到了一种跨流域非定常流动数值模拟的方法.该求解方法以Boltzmann模型方程为控制方程,在常温状态下如果考虑转动能激发的情况...  相似文献   

4.
Benjamin Fain 《Physica A》1980,101(1):67-88
A general theory of rate processes is developed. Starting from the first principles, the non-Markovian and Markovian type equations governing relaxation processes are derived. Under certain conditions (which are specified) these equations may be approximately reduced to master equations.The theory is applied to two specific models. In one of them the electron-nuclear system is represented by two intersecting electronic energy hyper-surfaces with a continuum of degrees of freedom plus a small perturbation causing transitions between these electronic states. The equations determining the time behaviour of the electronic subsystem in the general case do not coincide with master equations and the time evolution of the system has mixed oscillatory decaying behaviour.Another model takes into account a possible competition between electronic and vibrational relaxations. The corresponding kinetic equations are derived.  相似文献   

5.
In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and dynamic information. We also proposed a corresponding Boltzmman dynamic statistical information theory. Based on the fact that the state variable evolution equation of respective dynamic systems, i.e. Fokker-Planck equation and Liouville diffusion equation can be regarded as their information symbol evolution equation, we derived the nonlinear evolution equations of Shannon dynamic entropy density and dynamic information density and the nonlinear evolution equations of Boltzmann dynamic entropy density and dynamic information density, that describe respectively the evolution law of dynamic entropy and dynamic information. The evolution equations of these two kinds of dynamic entropies and dynamic informations show in unison that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes; and that the time rate of change of dynamic information densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes. Entropy and information have been combined with the state and its law of motion of the systems. Furthermore we presented the formulas of two kinds of entropy production rates and information dissipation rates, the expressions of two kinds of drift information flows and diffusion information flows. We proved that two kinds of information dissipation rates (or the decrease rates of the total information) were equal to their corresponding entropy production rates (or the increase rates of the total entropy) in the same dynamic system. We obtained the formulas of two kinds of dynamic mutual informations and dynamic channel capacities reflecting the dynamic dissipation characteristics in the transmission processes, which change into their maximum—the present static mutual information and static channel capacity under the limit case where the proportion of channel length to information transmission rate approaches to zero. All these unified and rigorous theoretical formulas and results are derived from the evolution equations of dynamic information and dynamic entropy without adding any extra assumption. In this review, we give an overview on the above main ideas, methods and results, and discuss the similarity and difference between two kinds of dynamic statistical information theories.  相似文献   

6.
Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air–hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.  相似文献   

7.
In turbulent combustion simulations, the flow structure at the unresolved scale level needs to be reasonably modeled. Following the idea of turbulent flamelet equation for the non-premixed flame case, which was derived based on the filtered governing equations(L. Wang, Combust. Flame 175, 259(2017)), the scalar dissipation term for tabulation can be directly computed from the resolved flowing quantities, instead of solving species transport equations. Therefore, the challenging source term closure for the scalar dissipation or any assumed probability density functions can be avoided;meanwhile the chemical sources are closed by scaling relations. The general principles are discussed in the context of large eddy simulation with case validation. The new model predictions of the bluff-body flame show sufficiently improved results, compared with these from the classic progress-variable approach.  相似文献   

8.
In the present work, both computational and experimental methods are employed to study the two-phase flow occurring in a model pump sump. The two-fluid model of the two-phase flow has been applied to the simulation of the three-dimensional cavitating flow. The governing equations of the two-phase cavitating flow are derived from the kinetic theory based on the Boltzmann equation. The isotropic RNG$k-\epsilon-k_{ca}$ turbulence model of two-phase flows in the form of cavity number instead of the form of cavity phase volume fraction is developed. The RNG $k-\epsilon-k_{ca}$ turbulence model, that is the RNG$k-\epsilon$ turbulence model for the liquid phase combined with the $k_{ca}$model for the cavity phase, is employed to close the governing turbulent equations of the two-phase flow. The computation of the cavitating flow through a model pump sump has been carried out with this model in three-dimensional spaces. The calculated results have been compared with the data of the PIV experiment. Good qualitative agreement has been achieved which exhibits the reliability of the numerical simulation model.  相似文献   

9.
The problem of deducing one-dimensional theory from two-dimensional theory for a homogeneous isotropic beam is investigated. Based on elasticity theory, the refined theory of rectangular beams is derived by using Papkovich-Neuber solution and Lur’e method without ad hoc assumptions. It is shown that the displacements and stresses of the beam can be represented by the angle of rotation and the deflection of the neutral surface. Based on the refined beam theory, the exact equations for the beam without transverse surface loadings are derived and consist of two governing differential equations: the fourth-order equation and the transcendental equation. The approximate equations for the beam under transverse loadings are derived directly from the refined beam theory and are almost the same as the governing equations of Timoshenko beam theory. In two examples, it is shown that the new theory provides better results than Levinson’s beam theory when compared with those obtained from the linear theory of elasticity.  相似文献   

10.
Multicomponent lattice-Boltzmann model with interparticle interaction   总被引:6,自引:0,他引:6  
A lattice Boltzmann model for simulating fluids with multiple components and interparticle forces proposed by Shan and Chen is described in detail. Macroscopic equations governing the motion of each component are derived by using the Chapman-Enskog method. The mutual diffusivity in a binary mixture is calculated analytically and confirment by numerical simulation. The diffusivity is generally a function of the concentrations of the two components but independent of the fluid velocity, so that the diffusion is Galilean invariant. The analytically calculated shear kinematic viscosity of this model is also confiremoed numerically.  相似文献   

11.
石玉峰  许庆彦  柳百成 《物理学报》2011,60(12):126101-126101
合金凝固过程中存在于枝晶尖端液相区的强制对流和自然对流均能改变溶质扩散层厚度,从而会对枝晶形貌产生较大影响.在元胞自动机模型基础上,耦合液体流动方程、热传导方程和溶质对流扩散方程,建立了新的计算微观组织演化的数值模型,并利用该模型研究了强制对流和自然对流对枝晶生长的影响.三维数值模拟结果再现了强制对流作用下等轴枝晶的生长过程,揭示了强制对流对枝晶生长速率和尖端半径的影响特点.同时利用该模型模拟了NH4Cl-H2O溶液定向凝固过程中自然对流对柱状晶生长的影响,并采用相应的实验进行验证.模拟结果与实验结果符合良好,从而证明该模型是可靠的,可推广到实际合金系中. 关键词: 元胞自动机 对流 4Cl-H2O溶液')" href="#">NH4Cl-H2O溶液 定向凝固  相似文献   

12.
The problem of deducing one-dimensional theory from two-dimensional theory for a transversely isotropic piezoelectric rectangular beam is investigated. Based on the piezoelasticity theory, the refined theory of piezoelectric beams is derived by using the general solution of transversely isotropic piezoelasticity and Lur’e method without ad hoc assumptions. Based on the refined theory of piezoelectric beams, the exact equations for the beams without transverse surface loadings are derived, which consist of two governing differential equations: the fourth-order equation and the transcendental equation. The approximate equations for the beams under transverse loadings are derived directly from the refined beam theory. As a special case, the governing differential equations for transversely isotropic elastic beams are obtained from the corresponding equations of piezoelectric beams. To illustrate the application of the beam theory developed, a uniformly loaded and simply supported piezoelectric beam is examined.  相似文献   

13.
Michio Tokuyama 《Physica A》2010,389(5):951-969
A statistical-mechanical theory of slow dynamics near the glass transition in two kinds of glass-forming systems, (M) molecular systems and (S) suspensions of colloids, is presented from a unified point of view based on the Tokuyama-Mori projection operator method. The exact diffusion equations for the coherent- and the incoherent-intermediate scattering functions are first derived, whose memory functions are convolutionless in time and contain the correlation effects due to the hydrodynamic interactions in (S). The analytic expressions of the memory functions are then calculated within the mode-coupling theory (MCT) approximation and are shown to coincide with the conventional ones obtained by MCT. Alternative mode-coupling equations are thus obtained in (M) and (S) separately. Self-diffusion is also discussed. Alternative equations for the mean-square displacement and the non-Gaussian parameter are also derived within MCT approximation. All results in both the systems are compared with those obtained by MCT.  相似文献   

14.
A scattering matrix is defined for eq. (1), and a complete set of equations, governing the time evolution of the scattering parameters, is derived by a general method. These equations form a basis for the perturbation theory.  相似文献   

15.
王芳  李俊林  杨斌鑫 《物理学报》2014,63(8):84601-084601
建立了黏弹性流体在充模过程中带有相变的气一液两相模型,该模型分别由气、液两相的质量守恒方程、动量守恒方程、能量守恒方程描述,并通过引入Heaviside函数将气一液两相的方程组统一为一个方程组;建立了一个对型腔内熔体和气体都适用的修正的焓方法来描述充模过程中的相变,采用基于同位网格的有限体积方法对模型进行求解,水平集方法捕捉充模过程中的界面演化,模拟出了黏弹性流体在充模过程中的凝固现象,得出了充模过程中型腔内的温度、压力、第一法向应力差等随时间的变化;并讨论了型腔壁面温度、熔体温度、注射速度对充模过程中凝固现象的影响,研究结果表明:型腔壁面温度越高,凝固层越薄;熔体温度越高,凝固层越薄;注射速度越高,凝固层越薄,故提高型腔壁面温度、熔体温度、注射速度可以减少或消除型腔壁面附近的凝固层。  相似文献   

16.
Starting off from the relationship between time-dependent friction and velocity softening we present a generalization of the continuous, one-dimensional homogeneous Burridge–Knopoff (BK) model by allowing for displacements by plastic creep and rigid sliding. The evolution equations describe the coupled dynamics of an order parameter-like field variable (the sliding rate) and a control parameter field (the driving force). In addition to the velocity-softening instability and deterministic chaos known from the BK model, the model exhibits a velocity-strengthening regime at low displacement rates which is characterized by anomalous diffusion and which may be interpreted as a continuum analogue of self-organized criticality (SOC). The governing evolution equations for both regimes (a generalized time-dependent Ginzburg–Landau equation and a non-linear diffusion equation, respectively) are derived and implications with regard to fault dynamics and power-law scaling of event-size distributions are discussed. Since the model accounts for memory friction and since it combines features of deterministic chaos and SOC it displays interesting implications as to (i) material aspects of fault friction, (ii) the origin of scaling, (iii) questions related to precursor events, aftershocks and afterslip, and (iv) the problem of earthquake predictability. Moreover, by appropriate re-interpretation of the dynamical variables the model applies to other SOC systems, e.g. sandpiles.  相似文献   

17.
In this paper we present a unified phase-field model for non-equilibrium growths of various three-dimensional metal islands on insulating surfaces. We introduce a phase-field variable to distinguish the island from the non-island regions and substrate and a density variable to describe local density of deposited adatoms. Two partial differential equations with appropriate boundary conditions, as the governing equations, are used to describe the evolution of the three-dimensional metal islands and the diffusion of adatoms. We solve the equations by using an adaptive mesh refinement method so that we can simulate the non-equilibrium growth of three-dimensional metal islands from tens of nanometers to several micrometers. We investigate the dependence of simulated results on the model parameters and experimental conditions. Equilibrium shape of such islands can be obtained through sufficient post-deposition relaxation. Experimental trends of island size and shape on various scales are obtained with reasonable parameters. This method should be a good approach to non-equilibrium growths of multi-scale three-dimensional metal islands.  相似文献   

18.
The dynamics of systems of moving particles in engineering applications is rapidly gaining interest as the incentive to control and optimize granular flow systems increases. Increasing availability of computing power has rendered the in silico study of large assemblies of discrete particles in near-realistic systems feasible. Generally, the governing equations for systems of non-adhesive discrete particles are derived from Newton's equation of motion with the basic assumption that the normal and tangential forces arising between two impacting particles can be independently derived from the virtual overlap of the particles and the tangential displacement of the initial contact points. In this study, the problem is placed in a rigorous multibody dynamics setting and a detailed comparison is made with the classical theory. An attempt has been made to treat particles and walls in a unified way.  相似文献   

19.
This paper presents a new modeling technique that can represent acoustically coupled systems in a unified manner. The proposed unified multiphase (UMP) modeling technique uses Biot’s equations that are originally derived for poroelastic media to represent not only poroelastic media but also non-poroelastic ones ranging from acoustic and elastic media to septa. To recover the original vibro-acoustic behaviors of non-poroelastic media, material parameters of a base poroelastic medium are adjusted depending on the target media. The real virtue of this UMP technique is that interface coupling conditions between any media can be automatically satisfied, so no medium-dependent interface condition needs to be imposed explicitly. Thereby, the proposed technique can effectively model any acoustically coupled system having locally varying medium phases and evolving interfaces. A typical situation can occur in an iterative design process. Because the proposed UMP modeling technique needs theoretical justifications for further development, this work is mainly focused on how the technique recovers the governing equations of non-poroelastic media and expresses their interface conditions. We also address how to describe various boundary conditions of the media in the technique. Some numerical studies are carried out to demonstrate the validity of the proposed modeling technique.  相似文献   

20.
再结晶和外力场下第二相析出的相场法模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
宗亚平  王明涛  郭巍 《物理学报》2009,58(13):161-S168
在讨论相场法模拟基本方程的基础上,提出了晶界范围宽度的新概念,解释了相场模拟模型中有序化参数梯度范围的物理意义,论证了晶界范围不是晶界原子错排的宽度,而是界面能和界面元素偏析存在范围的观点.建立了一个模拟合金再结晶的相场模型,提出了一系列法则来获得模型中各参数的物理真实值,以AZ31镁合金为例,实现了再结晶过程晶粒长大的真实时间和空间的模拟,通过与试验数据的对比证明了模型的有效性.此外,还列举了相场法模拟Ti-25Al-10Nb合金中O相在外力场作用下析出过程的一系列有趣的新结果,讨论了外力场对第二相析出的重要影响和机理以及模拟结果对合金开发潜在的重要指导意义. 关键词: 相场法 再结晶 析出 外力场  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号