首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron paramagnetic resonance (EPR) investigations has been carried out on the new family of molybdenum doped vanadium sesquioxides (V1−xMox)2−δO3. The oxidation effects were monitored from the rate of paramagnetic V4+ created when the sample is exposed to the air. The effects of the oxidation time, sample temperature, and annealing at 1000 °C under a diluted hydrogen atmosphere on the EPR signal features are analyzed. The V4+ concentration in the oxidized samples is determined and the relaxation effects driven by the conduction electrons are pointed out from the thermal behaviour of the EPR line features. EPR spectra of all the oxidized samples also reveal a small ferromagnetic contribution strongly correlated with the V4+ content.  相似文献   

2.
The magnetic behavior of the FeInxCr2−xSe4 system (with x=0.0, 0.2 and 0.4) has been investigated by magnetic and Mössbauer spectroscopy. Hyperfine parameters indicate that iron is in the Fe2+ oxidation state, with a minor (∼9%) Fe3+ fraction, located at different layers in the structure. Low-field magnetization curves as a function of temperature showed that the antiferromagnetic (AFM) order temperature is TN=208(2) K for FeCr2Se4 and decreases to 174(3) K for FeIn0.4Cr1.6Se4. The effective magnetic moment μeff decreases with increasing In contents, and shows agreement with the expected values from the contribution of Fe2+ (5D) and Cr3+ (4F) electronic states. A second, low-temperature transition is observed at TG∼13 K, which has been assigned to the onset of a glassy state.  相似文献   

3.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si(1 0 0) and glass substrates. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Alternating gradient field magnetometer (AGFM) measurements provided saturation magnetization values ranging from 220 to 1200 emu/cm3. Values of squareness exceeding 0.8 have been measured. Coercive field may reach values up to 700 Oe, depending on the percentage of chromium, as well as the substrate nature and the direction of the applied magnetic field. The saturation magnetization value decreases as the Cr content increases. In order to study their dynamical magnetic properties, Brillouin Light Scattering (BLS) measurements have been performed on these samples. Stiffness constant value and anisotropy magnetic field were adjusted to fit the experimental BLS spectra. These results are analyzed and correlated.  相似文献   

4.
Cu-Cr alloys, irradiated with a low-energy, high-current electron beam, are analyzed by high-resolution secondary ion mass spectrometry. Mass spectra and images of Cu+ and Cr+ surface distributions finely reveal the regions enriched in Cu and Cr. For electron beam energies above a threshold value, the formation of a non-equilibrium Cu1−xCrx solid solution, extending over sub-micrometer areas is highlighted for the first time. A discussion of the process leading to Cu1−xCrx formation is given.  相似文献   

5.
NMR and susceptibility measurements have been made on a randomly mixed insulating ferrimagnet and antiferromagnet, MnxZn1-xCr2O4. The thermoremanence and the induced unidirectional anisotropy were observed for concentrations lower than x = 0.80, after field cooling. The compound Mn0.75Mg0.25Cr2O4 shows similar behaviour. When the latter is doped with V3+ at the B sites, its magnetic anisotropy increases strongly, but the change in the unidirectional anisotropy is smooth.  相似文献   

6.
X-band electron paramagnetic resonance (EPR) study of Cr3+-doped dipotassium tetrachloropalladate single crystal is done at liquid nitrogen temperature. EPR spectrum shows two sites. The spin-Hamiltonian parameters have been evaluated by employing hyperfine resonance lines observed in EPR spectra for different orientations of crystal in externally applied magnetic field. The values of spin-Hamiltonian and zero-field splitting (ZFS) parameters of Cr3+ ion-doped DTP for site I are: g x  = 2.096 ± 0.002, g y  = 2.167 ± 0.002, g z  = 2.220 ± 0.002, D = (89 ± 2) × 10?4 cm?1, E = (16 ± 2) × 10?4 cm?1. EPR study indicates that Cr3+ ion enters the host lattice substitutionally replacing K+ ion and local site symmetry reduces to orthorhombic. Optical absorption spectra are recorded at room temperature. From the optical absorption study, the Racah parameters (B = 521 cm?1, C = 2,861 cm?1), cubic crystal field splitting parameter (Dq = 1,851 cm?1) and nephelauxetic parameters (h = 2.06, k = 0.21) are determined. These parameters together with EPR data are used to discuss the nature of bonding in the crystal.  相似文献   

7.
Zn1−xNixO (x=0-0.25) hierarchical microspheres were synthesized via a solvothermal process in ethylene glycol. The magnetic microspheres were characterized by X-ray powder diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectra, X-ray photoelectron spectroscopy, room-temperature photoluminescence spectra, and vibrating sample magnetometer. The as-prepared samples take on a well-defined spherical architecture following the processes of spontaneous aggregation and localized Ostwald ripening. Dependence of the magnetization and morphology on Ni2+ content was observed. Magnetic hysteresis loops reveal that the Ni-doped ZnO microspheres exhibit ferromagnetic loops at room temperature.  相似文献   

8.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

9.
Glass-ceramics have been derived from 4.5MgO(45−x)CaO34SiO216P2O50.5CaF2xFe2O3 (x=5, 10, 15, 20 wt%) glasses by heat treatment. Room temperature electron paramagnetic resonance (EPR) spectra and temperature-dependent magnetic susceptibility (χ) of the glass-ceramics have been obtained. The EPR absorption line centered at g≈4.3 disappeared at higher concentrations of iron oxide. The intensity and line width of the EPR absorption line centered at g≈2.1 increased as the iron oxide concentration was increased. Temperature-dependent magnetization of samples with low iron oxide content revealed ferrimagnetic as well as paramagnetic contributions. Information about the structural changes involving iron ions, their valence state and the type of magnetic interactions between the Fe ions as a function of composition was obtained using EPR and χ studies.  相似文献   

10.
11.
Electron paramagnetic resonance (EPR), optical absorption and emission spectra of Cr3+ ions doped in (30−x) (NaPO3)6+30PbO+40B2O3+xCr2O3 (x=0.5, 2.0, 3.0, 4.0 and 5.0 mol%) glasses have been studied. The EPR spectra exhibit resonance signals with effective g values at g≈4.55 and g≈1.97. The EPR spectra of x=3.0 mol% of Cr2O3 in sodium-lead borophosphate glass sample were studied at various temperatures (295-123 K). The intensity of the resonance signals increases with decrease in temperature. The optical absorption spectrum exhibits four bands characteristic of Cr3+ ions in octahedral symmetry. From the analysis of the bands, the crystal-field parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. The emission spectrum exhibit one broad band characteristic of Cr3+ ions in octahedral symmetry. This band has been assigned to the transition 4T2g (F)→4A2g (F). Correlating EPR and optical data, the molecular bonding coefficient (α) has been evaluated.  相似文献   

12.
We report on the structural and magnetic properties of nanoparticles of MnxCo1−xFe2O4 (x=0.1, 0.5) ferrites produced by the glycothermal reaction. From the analysis of XRD spectra and TEM micrographs, particle sizes of the samples have been found to be about 8 nm (for x=0.1) and 13 nm (for x=0.5). The samples were characterized by DC magnetization in the temperature range 5-380 K and in magnetic fields of up to 40 kOe using a SQUID magnetometer. Mössbauer spectroscopy results show that the sample with higher Mn content has enhanced hyperfine fields after thermal annealing at 700 °C. There is a corresponding small reduction in hyperfine fields for the sample with lower Mn content. The variations of saturation magnetization, remnant magnetization and coercive fields as functions of temperature are also presented. Our results show evidence of superparamagnetic behaviour associated with the nanosized particles. Particle sizes appear to be critical in explaining the observed properties.  相似文献   

13.
A correlation between the second critical field Hc2 of the helix to paramagnetic transition and the magnetic specific heat C-peak was found in ZnCr2−xAlxSe4 spinel single crystals with x=0.15, 0.23. The specific heat peak is anomalously sharp for all finite magnetic fields used here and this points to a first order magneto-structural transition (from cubic to tetragonal symmetry). The C(T)-peak is increasingly suppressed as the external field increases. Approaching the Neel temperature TN, a broad ac-magnetic susceptibility peak is observed for zero dc-magnetic field. That peak does not show an energy loss and thus points towards a return to a second order type of transition. The magnetic contribution to the specific heat displays a sharp peak at TN and is maximal at the spin fluctuation temperature Tsf=34 K. Tsf is related to the maximum of the magnetic susceptibility at Tm=40 K (at 50 kOe) in the spin fluctuation region, as evidenced by the entropy exceeding 90% of the entropy calculated classically for the complete alignment of the Cr spins, (2−x)R ln(2S+1). The X-ray photoelectron spectroscopy (XPS) data indicate that Al-substitution does not affect Cr3+ 3d3 electronic configuration.  相似文献   

14.
Polycrystalline Zn1−xCoxO (x=0, 0.02, 0.05, 0.10 and 0.15) oxides have been synthesized by solid state reaction via sintering ZnO and Co powders in open air. X-ray diffraction analyses using Rietveld refinement indicate that a stoichiometric single phase with a wurtzite-like structure was found in Zn1−xCoxO samples with x up to 0.10. The elemental mapping using energy dispersive X-ray spectroscopic analyses presents a uniform distribution of Co. Optical transmittance measurements show that several extra absorption bands appear in the Co-doped ZnO, which is due to the transitions between the crystal-field-split 3d levels of tetrahedral Co2+ substituting Zn2+ ions. Raman measurements show that limited host lattice defects are induced by Co doping. Magnetization measurements reveal that the Co-doped ZnO samples are paramagnetic due to the absence of free carriers and in low temperature the dominant magnetic interaction is nearest-neighbor antiferromagnetic.  相似文献   

15.
For the polycrystalline samples of Mn1?xCuxCr2S4 (x = 0.85, 0.90, 0.95) the magnetization was measured in the temperature range between 77 K and the Curie temperature, TC, using a magnetic balance (Faraday's method) and pulsed magnetic fields up to 2.0 T. The magnetic susceptibility was measured between TC and about 600 K. The Curie temperatures were obtained using the kink point method.In the temperature range between 4.2 and 77 K the magnetization was measured in stationary magnetic fields up to 14 T. The data indicate a noncollinear ferrimagnetic structure. The compounds under investigation can be treated as CuCr2S4 slightly doped with Mn, with a valence distribution Mn2+1?xCu1+xCr3+2?xCr4+xS2?4.  相似文献   

16.
LiPr1−xCexP4O12 (x=0, 0.002, 0.02; 0.1) powder samples were prepared using the melt solution technique. Luminescent parameters of LiPr1−xCexP4O12 phosphors have been investigated under ultraviolet-vacuum ultraviolet (3-12 eV) synchrotron radiation and X-rays excitation at room and near liquid He temperatures. Excitation luminescence spectra of Ce3+ emission, luminescent spectra and decay curves from the lower excited state levels of the 4f15d1 and 5d1 electronic configuration of the Pr3+ and Ce3+, respectively, clearly indicate energy transfer from Pr3+ to Ce3+. Energy migration proceeds via the Pr-sublattice followed by nonradiation transfer from Pr3+ to Ce3+ ions.  相似文献   

17.
Ultrafine Ce1−xNdxO2−δ (x=0-0.25) powders were synthesized by self-propagating room temperature synthesis. Raman spectra were measured at room temperature in the 300-700 cm−1 spectral range. The shift and asymmetric broadening of the Raman F2g mode at about 454 cm−1 in pure and doped ceria samples could be explained with combined size and inhomogenous strain effects. Increased concentration of O2− vacancies with doping is followed by an appearance of new Raman feature at about 545 cm−1.  相似文献   

18.
LPE layers of AlxGa1?xAs:Cr:Sn single crystals were grown and the photoluminescence band due to Cr2+ was observed over the range 0≤x≤0.42 when measured at 77 K. Preliminary spectra which reveal the characteristic zero phonon line were obtained at 4.2 K for x=0.23. The experimental results support the model in which the 0.84 eV photoluminescence band in GaAs:Cr is attributed to intraimpurity transitions at Cr2+.  相似文献   

19.
Optical absorption spectra near the absorption edge of the system HgxZn1?xCr2Se4 have been measured for various compositions in the temperature range between room and liquid helium temperatures. A correlation between the optical properties and magnetic structures becomes obvious from the measurements of the energy at the absorption edge and the change in the magnetic property with composition variation, and by measuring the optical absorption spectra under the applied magnetic field.  相似文献   

20.
The roles of aliovalent CaII-for-YIII substitution and high-pressure-oxygen annealing in the process of ‘superconducterizing’ the Co-based layered copper oxide, CoSr2(Y1−xCax)Cu2O7+δ (Co-1212), were investigated. The as-air-synthesized samples up to x=0.4 were found essentially oxygen stoichiometric (−0.03≤δ≤0.00). These samples, however, were not superconducting, suggesting that the holes created by the divalent-for-trivalent cation substitution are trapped on Co in the charge reservoir. Ultra-high-pressure heat treatment carried out at 5 GPa and 500 °C for 30 min in the presence of Ag2O2 as an excess oxygen source induced bulk superconductivity in these samples. The highest Tc was obtained for the high-oxygen-pressure treated x=0.3 sample at ∼40 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号