共查询到20条相似文献,搜索用时 15 毫秒
1.
Y.G. Cao X.L. Chen Y.C. Lan J.Y. Li Y.P. Xu T. Xu Y. Zhang J.K. Liang 《Applied Physics A: Materials Science & Processing》2000,71(3):351-352
A new condensed form of AlN nanocrystalline solids was obtained directly from reactions of metal Al and (NH4Cl+NH4I) in liquid ammonia at 550 °C, without the subsequent consolidation process as in the conventional method. The synthesized product is a transparent bulk solid, while the constituted nanocrystals have an average size of about 18 nm and possess the same wurtzite structure as bulk AlN. (NH4Cl+NH4I), which plays a role of a catalyst in the present synthetic route, is indispensable. The photoluminescence spectrum of the AlN nanocrystalline solids shows a broad blue band centered at 400 nm. Received: 20 June 2000 / Accepted: 22 June 2000 / Published online: 9 August 2000 相似文献
2.
S.V. Bhat 《Solid State Communications》2007,141(6):325-328
Indium-doped GaN nanocrystals with 5% and 10% In have been prepared by a low temperature solvothermal method using hexamethyldisilazane as the nitriding reagent. The nanocrystals show Raman bands at lower frequencies compared to GaN. Photoluminescence spectra of the In-doped GaN nanocrystals exhibit an increase in the FWHM with the decrease in the PL band energy, the band energy itself decreasing with increase in the In content. 相似文献
3.
Large-area ZnS nanowires were synthesized through a vapor phase deposition method. X-ray diffraction and electron microscopy results show that the products are composed of single crystalline ZnS nanowires with a cubic structure. The nanowires have sharp tips and are distributed uniformly on silicon substrates. The diameter of the bases is in the range of 320-530 nm and that of the tips is around 20-30 nm. The strong ultraviolet emission in the photoluminescence spectra also demonstrates that the ZnS nanowires are of high crystalline perfection. Field emission measurements reveal that the ZnS nanowires have a fairly low threshold field, which may be ascribed to their very sharp tips, rough surfaces and high crystal quality. The perfect field emission ability of the ZnS nanowires makes them a promising candidate for the fabrication of flexible cold cathodes. 相似文献
4.
Hongtao Shi Youdou Zheng Yongbin Wang Renkuan Yuan 《Applied Physics A: Materials Science & Processing》1993,57(6):573-575
Porous GeSi/Si heterostructures were fabricated by laterally anodization in HF-based solutions. Photoluminescence spectra have been investigated as a function of temperature (77–300 K), showing that porous GeSi has a quite different temperature dependence from that of porous silicon. Raman spectra indicated that the sample structure changed after anodization. Phonon participation and direct recombination of excitons are proposed to be responsible in the light emission processes of porous GeSi and Si, respectively. 相似文献
5.
Dislocation-related photoluminescence in silicon 总被引:2,自引:0,他引:2
R. Sauer J. Weber J. Stolz E. R. Weber K. -H. Küsters H. Alexander 《Applied Physics A: Materials Science & Processing》1985,36(1):1-13
Photoluminescence is studied in silicon, deformed in a well-defined and reproducible way. Usual deformation conditions (high temperature, low stress) result in sharp spectra of the D1 through D4 lines as recently described in the literature. New lines D5 and D6 emerge for predeformation as above and subsequent low-temperature, high-stress deformation. Another new sharp line, D12, is observed when both the familiar and the novel lines appear simultaneously. Annealing for 1 h atT
A 300 °C causes all new lines to disappear and the D1–D4 spectra to reappear. Quantitative annealing and TEM micrographs suggest that D5 is related to straight dislocations and D6 to stacking faults, whereas D1–D4 are due to relaxed dislocations. Photoluminescence under uniaxial stress shows that D1/D2 originate in tetragonal defects with random orientation relative to 100 directions, whereas D6 stems from triclinic centers, preferentially oriented — as are the D3/D4 centers. We conclude that the D3/D4 and the D5 and D6 defects are closely related, whereas the independent D1/D2 centers might be deformation-produced point defects in the strain region of dislocations. 相似文献
6.
Strong blue photoluminescence from aligned silica nanofibers 总被引:1,自引:0,他引:1
L. Dai X.L. Chen J.K. Jian W.J. Wang T. Zhou B.Q. Hu 《Applied Physics A: Materials Science & Processing》2003,76(4):625-627
Photoluminescence (PL) and infrared spectra of aligned silica nanofibers are investigated. Two striking strong blue luminescence
emissions have been found at room temperature. This suggests that the silica nanofibers could be a candidate material for
a blue-light emitter. The intensity of the PL emission decreases after annealing, which can be interpreted as the decrease
of the oxygen deficiency resulting in the reduction of radiative recombination centers. Infrared spectra provide further evidence
of this conclusion, where the enhancement of Si–O absorption is observed in annealed samples.
Received: 2 October 2002 / Accepted: 7 October 2002 / Published online: 8 January 2003
RID="*"
ID="*"Corresponding author. Fax: +86-10/8264-9531, E-mail: ldai@vip.sina.com 相似文献
7.
Structural and photoluminescence properties of thermally evaporated Cd1−xMnxS nano-crystalline films
D. Sreekantha Reddy D. Raja Reddy K.R. Gunasekhar B.K. Reddy 《Solid State Communications》2007,142(8):466-471
Thin films of Cd1−xMnxS (0≤x≤0.5) were formed on glass substrates by resistive vacuum thermal evaporation. All the films were deposited at 300 K and the films were annealed at 373, 473 and 573 K for 1 h in a vacuum of 10−6 mbar. Atomic force microscopy (AFM) studies showed that all the films investigated were in nano-crystalline form with a grain size in the range 36-82 nm. All the films exhibited a wurtzite structure of the host material. The lattice parameters varied linearly with composition following Vegard’s law in the entire composition range. Photoluminescence studies showed that two distinct emission bands were observed for each Cd1−xMnxS compound. One corresponds to internal transition and the other one is due to the transition of Mn2+ ions in interstitial sites or in small ‘Mn’ chalcogenic clusters. 相似文献
8.
Z. F. Li Z. Y. Yang R. F. Xiao 《Applied Physics A: Materials Science & Processing》1996,63(3):243-246
Visible photoluminescence (PL) has been observed from the hydrogenated amorphous carbon (a-C:H) films prepared by ArF pulsed laser ablation of polymethyl methacrylate (PMMA) in the presence of hydrogen gas (H2). With increasing hydrogen concentration the PL intensity increases and the intensity maximum blue-shifted. The PL intensity also increases after hours of light illumination, exhibiting a light soaking enhancement. Increasing the deposition temperature decreases the PL and increases the ratio of sp3/sp2 bonds.Z.F. Li is on leave from Department of Physics, Nanjing University, Nanjing 210093, P.R. China. 相似文献
9.
B.M. Monroy J. Aguilar-Hernández J. Fandiño G. Contreras-Puente J.C. Alonso 《Journal of luminescence》2006,121(2):349-352
Very thin (nanometric) silicon layers were grown in between silicon nitride barriers by SiH2Cl2/H2/NH3 plasma-enhanced chemical vapor deposition (PECVD). The multilayer structures were deposited onto fused silica and silicon substrates. Deposition conditions were selected to favor Si cluster formation of different sizes in between the barriers of silicon nitride. The samples were thermally treated in an inert atmosphere for 1 h at 500 °C for dehydrogenation. Room-temperature photoluminescence (RT-PL) and optical transmission in different ranges were used to evaluate the optical properties of the structures. UV-VIS absorption spectra present two band edges. These band edges are well fitted by the Tauc model typically used for amorphous materials. RT-PL spectra are characterized by strong broad bands, which have a blue shift as a function of the deposition time of the silicon layer, even for as-grown samples. The broad luminescence could be associated with the confinement effect in the silicon clusters. After annealing of the samples, the PL bands red shift. This is probably due to the thermal decomposition of N-H bonds with further effusion of hydrogen and better nitrogen passivation of the nc-Si/SiNx interfaces. 相似文献
10.
In this paper, effects of Fe doping on crystallinity, microstructure and photoluminescence (PL) properties of sol-gel derived SnO2 thin films are reported. It is shown that doping of Fe3+ ions leads to crystallite size reduction and higher strain in SnO2 thin films. The room temperature PL spectra show marked changes in intensity and blue-shift of the emission lines upon Fe doping. These observations have been correlated with structural changes and defect chemistry of Fe doped SnO2 thin films. 相似文献
11.
We synthesize Y3Al5O12:Ce3+ (YAG:Ce3+) nanoparticles in the presence of citric acid by glycothermal method. Fourier transform infrared absorption spectroscopy measurement indicates that the intensity of the peak corresponding to carboxyl groups coordinating to the nanoparticles increases with increasing amount of citric acid. At the same time, the primary particle diameter decreases from 10.2 to 4.0 nm. In addition, the internal quantum efficiency of the photoluminescence (PL) due to the 4f-5d transition of Ce3+ increases from 22.0% to 40.1% with increasing amount of citric acid. Two kinds of PL decay lifetimes, 16-26 and 72-112 ns, are detected for YAG:Ce3+ nanoparticles, whereas the micron sized YAG:Ce3+ bulk shows the lifetime of 57 ns. We discuss these phenomena from the aspects of the coordination of citric acid and the incorporation of Ce3+ ions into the nanoparticles. 相似文献
12.
We report an investigation of the recombination mechanism for photoluminescence (PL) in InN epilayers grown by molecular beam epitaxy and metal-organic chemical vapor deposition with a wide range of free electron concentrations from 3.5×1017-5×1019 cm−3. We found that the PL spectra are strongly blueshifted with increasing excitation intensity. For all the samples studied, the exponent of the relationship between the integrated PL intensity and the excitation intensity is very close to unity and independent of the temperature. By assuming Gaussian fluctuations of the random impurity potential, calculation based on the ‘free-to-bound’ recombination model can be used to interpret our results very well and it correctly reproduces the development of the total PL peak shift as a function of carrier concentration. It is concluded that the PL transition mechanism in InN epifilms can be characterized as the recombination of free electrons in the conduction band to nonequilibrium holes in the valence band tail. 相似文献
13.
ZnS:Cu,Mn phosphors were prepared by conventional solid state reaction with the aid of NaCl-MgCl2 flux at 900 °C. The samples were characterized by X-ray powder diffraction, UV-vis absorbance spectra and photoluminescence spectra. All samples possess cubic structure. Cu has a much stronger effect on the absorption property of ZnS than Mn. Incorporation of Mn into ZnS host only slightly enhances the light absorption, while addition of Cu remarkably increases the ability of absorption due to ground state Cu+ absorption. The emission spectra of the ZnS:Cu,Mn phosphors consist of three bands centered at about 452, 520 and 580 nm, respectively. Introduction of Mn significantly quenches the green luminescence of ZnS:Cu. The excitation energy absorbed by Cu is efficiently transferred to Mn activators non-radiatively and the Mn luminescence can be sensitized by Cu behaving as a sensitizer (energy donor). 相似文献
14.
Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers 下载免费PDF全文
The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage considering the resonant Forster energy transfer between the at 110K is observed, which can be explained by wetting layer states at elevated temperatures. 相似文献
15.
Absorption spectra of BiSbO4 are studied. The electronic structure calculated by the DFT shows that BiSbO4 is a semiconductor, with direct band gap 2.96 eV, which is consistent with UV-visible diffuse reflectance experiment. The host lattice emission band is located at 440 nm under VUV excitation. Eu^3+ and Pr^3+ doped samples have high luminescence efficiency in emitting red and green light, respectively. From the partial density of states, Eu^3+ doped emitting spectrum, and the host crystal structure parameters, the relationship between structure and optical properties is discussed. It is found that the Eu^3+ ions occupied Bi^3+ sites, and there could be an energy transfer from Bi^3+ ions to RE^3+ ions. 相似文献
16.
Strong Green Light Emission from Low-Temperature Grown a-SiNx:H Film after Different Oxidation Routes 下载免费PDF全文
Room-temperature deposited amorphous silicon nitride (a-SiNx :H) films exhibit intense green light emission after post-treated by plasma oxidation, thermal oxidation and natural oxidation, respectively. All the photoluminescence (PL) spectra are peaked at around 500nm, independent of oxidation method and excitation wavelength. Compared with the PL results from oxidized a-Si:H and as-deposited a-SiNx:H samples, it is indicated that not only oxygen but also nitrogen is of an important role in enhancing light emission from the oxidized a-SiNx:H. Combining the PL results with the analyses of the bonding configurations as well as chemical compositions of the films, the strong green light emission is suggested to be from radiative recombination in luminescent centres related to N Si-O bonds. 相似文献
17.
Ca3Y2 (BO3)4:Eu^3+ phosphor is synthesized by high temperature solid-state reaction method, and the Iuminescence characteristics are investigated. The emission spectrum exhibits two strong red emissions at 613 and 621 nm corresponding to the electric dipole ^5 Do- ^7F2 transition of Eu^3+ under 365 nm excitation, the reason is that Eu^3+ substituting for Y^3+ occupies the non-centrosymmetric position in the crystal structure of Ca3 Y2 (BO3)4. The excitation spectrum for 613 nm indicates that the phosphor can be effectively excited by ultraviolet (UV) (254 nm, 365nm and 400nm) and blue (470nm) light. The effect of Eu^3+ concentration on the emission intensity of Ca3 Y2 (BO3)4 :Eu^3+ phosphor is measured, the result shows that the emission intensities increase with increasing Eu^3+ concentration, then decrease. The CIE colour coordinates of Ca3Y2 (BO3)4:Eu^3+ phosphor is (0.639, 0.357) at 15mol% Eu^3+. 相似文献
18.
Nanosized ZnGa2O4:Cr3+ powder is synthesized through hydrothermal method. The average particle size is 20 nm and they are spherical in shape. The excitation band from the charge transfer between Cr3+-O2− shows a blueshift behavior due to quantum confinement effect. X-ray diffraction pattern, Fourier transform-infrared spectrum, and electron paramagnetic resonance signal indicate that nanosized ZnGa2O4:Cr3+ phosphor shows many defect-related energy states and heavy lattice distortion in comparison with bulk ZnGa2O4:Cr3+ phosphor. Many defect states result in more nonradiative loss and shorter decay time. 相似文献
19.
M. Bosund A. Aierken J. Tiilikainen T. Hakkarainen H. Lipsanen 《Applied Surface Science》2008,254(17):5385-5389
The suitability of titanium nitride (TiN) for GaAs surface passivation and protection is investigated. A 2-6-nm thick TiN passivation layer is deposited by atomic layer deposition (ALD) at 275 ° C on top of InGaAs/GaAs near surface quantum well (NSQW) structures to study the surface passivation. X-ray reflectivity measurements are used to determine the physical properties of the passivation layer. TiN passivation does not affect the surface morphology of the samples, but increases significantly the photoluminescence intensity and carrier lifetime of the NSQWs, and also provides long-term protection of the sample surface. This study shows that ALD TiN coating is a promising low-temperature method for ex situ GaAs surface passivation. 相似文献
20.
Concentration and Temperature Dependences of YBO3:Bi^3+ Luminescence under Vacuum Ultraviolet Excitation 下载免费PDF全文
Bi^3+ doped YB03 phosphors are prepared by solid state reaction and their luminescent properties are investi- gated by using synchrotron radiation instrument, Concentration and temperature dependences of YBO3:Bi3+ luminescence under VUV/UV excitation is observed, The emission and excitation spectra are assigned, and the mechanism for these phenomena is explored, which result from the energy transfer between Bi^3+ ions occupying different sites in YB03 crystal lattice. 相似文献