首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multi-scale line-to-line vascular channels (LVCs) widely exist in nature because of their excellent transmission characteristics. In this paper, models of LVCs with turbulent convection heat transfer are established. Based on constructal theory and the entropy generation minimization principle, the constructal optimizations of LVCs with any order are conducted by taking the angles at bifurcations as the optimization variables. The heat flux on the channel wall per unit length is fixed and uniform. The areas occupied by vasculature and the total volumes of channels are fixed. The analytical expressions of the optimal angles, dimensionless total entropy generation rate and entropy generation number (EGN) of LVCs with any order versus dimensionless mass flow rate are obtained, respectively. The results indicate that the dimensionless total entropy generation rate of LVCs with any order can be significantly decreased by optimizing the angles of LVCs, which is significantly more when the order of LVCs is higher. As the dimensionless mass flow rate increases, the optimal angles of LVCs with any order remain unchanged first, then the optimal angles at the entrance (root) increase, and the other optimal angles decrease continuously and finally tend to the respective stable values. The optimal angles of LVCs continue to increase from the entrance to the outlet (crown), i.e., the LVCs with a certain order gradually spread out from the root to the crown. The dimensionless total entropy generation rate and EGN of LVCs first decrease and then increase with the growth of the dimensionless mass flow rate. There is optimal dimensionless mass flow rate, making the dimensionless total entropy generation rate and the EGN reach their respective minimums. The results obtained herein can provide some new theoretical guidelines of thermal design and management for the practical applications of LVCs.  相似文献   

2.
3.
It is widely accepted that the frictional pressure drop is impossible to be negative for pipe flow. However, the negative frictional pressure drops were observed for some cases of two-phase slug and churn flows in pipes, challenging the general sense of thermodynamic irreversibility. In order to solve this puzzling problem, theoretical investigations were performed for the entropy generation in slug and churn flows. It is found that the frictional pressure drop along with a buoyancy-like term contributes to the entropy generation due to mechanical energy loss for steady, incompressible slug and churn flows in vertical and inclined pipes. Experiments were conducted in a vertical pipe with diameter as 0.04 m for slug and churn flows. Most of the experimental data obtained for frictional pressure drop are negative at high gas–liquid ratios from 100 to 10,000. Entropy generation rates were calculated from experimental data. The results show that the buoyancy-like term is positive and responsible for a major part of entropy generation rate while the frictional pressure drop is responsible for a little part of entropy generation rate, because of which the overall entropy generation due to mechanical energy loss is still positive even if the frictional pressure drop is negative in vertical slug and churn flows. It is clear that the negative frictional pressure drops observed in slug and churn flows are not against the thermodynamics irreversibility.  相似文献   

4.
The statistical behaviours of different entropy generation mechanisms in the head-on interaction of turbulent premixed flames with a chemically inert wall within turbulent boundary layers have been analysed using Direct Numerical Simulation data. The entropy generation characteristics in the case of head-on premixed flame interaction with an isothermal wall is compared to that for an adiabatic wall. It has been found that entropy generation due to chemical reaction, thermal diffusion and molecular mixing remain comparable when the flame is away from the wall for both wall boundary conditions. However, the wall boundary condition affects the entropy generation during flame-wall interaction. In the case of isothermal wall, the entropy generation due to chemical reaction vanishes because of flame quenching and the entropy generation due to thermal diffusion becomes the leading entropy generator at the wall. By contrast, the entropy generation due to thermal diffusion and molecular mixing decrease at the adiabatic wall because of the vanishing wall-normal components of the gradients of temperature and species mass/mole fractions. These differences have significant effects on the overall entropy generation rate during flame-wall interaction, which suggest that combustor wall cooling needs to be optimized from the point of view of structural integrity and thermodynamic irreversibility.  相似文献   

5.
非平衡统计信息理论   总被引:5,自引:0,他引:5       下载免费PDF全文
邢修三 《物理学报》2004,53(9):2852-2863
阐述了以表述信息演化规律的信息(熵)演化方程为核心的非平 衡统计信息理论.推导出了 Shannon信息(熵)的非线性演化方程,引入了统计物理信息并 推导出了它的非线性演化方程.这两种信息(熵)演化方程一致表明:统计信息(熵)密度 随时间的变化率是由其在坐标空间(和态变量空间)的漂移、扩散和减损(产生)三者引起 的.由此方程出发,给出了统计信息减损率和统计熵产生率的简明公式、漂移信息流和扩散 信息流的表达式,证明了非平衡系统内的统计信息减损(或增加)率等于它的统计熵产生( 或减少)率、信息扩散与信息减损同时 关键词: 统计信息(熵)演化方程 统计信息减损率 统计熵产 生率 信息(熵)流 信息(熵)扩散 动态互信息  相似文献   

6.
There is a relation between the irreversibility of thermodynamic processes as expressed by the breaking of time-reversal symmetry, and the entropy production in such processes. We explain on an elementary mathematical level the relations between entropy production, phase-space contraction and time-reversal starting from a deterministic dynamics. Both closed and open systems, in the transient and in the steady regime, are considered. The main result identifies under general conditions the statistical mechanical entropy production as the source term of time-reversal breaking in the path space measure for the evolution of reduced variables. This provides a general algorithm for computing the entropy production and to understand in a unified way a number of useful (in)equalities. We also discuss the Markov approximation. Important are a number of old theoretical ideas for connecting the microscopic dynamics with thermodynamic behavior.  相似文献   

7.
We investigate the multi-scale structure of a tree network obtained by constructal theory and we propose a new geometrical framework to quantify deviations from scale invariance observed in many fields of physics and life sciences. We compare a constructally deduced fluid distribution network and one based on an assumed fractal algorithm. We show that: (i) the fractal network offers lower performance than the constructal object, and (ii) the constructal object exhibits a parabolic scaling explained in the context of the entropic skins geometry based on a scale diffusion equation in the scale space. Constructal optimization is equivalent to an equipartition of scale entropy production over scale space in the context of entropic skins theory. The association of constructal theory with entropic skins theory promises a deterministic theory to explain and build optimal arborescent structures.  相似文献   

8.
In the present work, the entropy generation due to the heat transfer and fluid friction irreversibility is investigated numerically for a three-dimensional flow induced by rotating and stretching motion of a cylinder. The isothermal boundary conditions are taken into account for the heat transfer analysis. The similarity transformations are utilized to convert the governing partial differential equations to ordinary differential equations. Resulting nonlinear differential equations are solved using a numerical scheme. Expressions for the entropy generation number, the Nusselt number and the Bejan number are obtained and discussed through graphs for various physical parameters. An analysis has been made to compare the heat transfer irreversibility with fluid friction irreversibility using the expression of the Bejan number. It is found that the surface is a durable source of irreversibility and the curvature of cylinder is to enhance the fluid friction irreversibility.  相似文献   

9.
We introduce an axiomatic thermodynamic theory for the general diffusion process and prove a theorem concerning entropy and irreversibility: the equivalence among time-reversibility, zero entropy production, symmetricity of the stationary diffusion process, and a potential condition.  相似文献   

10.
改进的相对转移熵的癫痫脑电分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王莹  侯凤贞  戴加飞  刘新峰  李锦  王俊 《物理学报》2014,63(21):218701-218701
脑电信号是由脑神经活动产生并且始终存在于中枢神经系统的自发性电位活动,是一种重要的生物电信号. 脑电信号是非常微弱的且是非线性的,脑电信号也具有时间不可逆性. 本文提出了一种新的基于正向序列转移概率与逆向序列转移概率的相对熵方法即相对转移熵方法,并应用此方法研究了正常脑电与癫痫脑电的不可逆性,实验结果显示癫痫患者的脑电信号的不可逆性明显小于正常人的脑电信号的不可逆性. 这说明改进的相对转移熵可以作为一个物理过程不可逆程度的度量参数,这使得应用脑电信号区分病人是否患有癫痫疾病具有积极指导意义. 关键词: 相对转移熵 脑电信号 符号化 时间不可逆性  相似文献   

11.
This study investigates the role of nonlinearity via optical parametric oscillator on the entropy production rate and quantum correlations in a hybrid optomechanical system. Specifically, the modified entropy production rate of an optical parametric oscillator placed in the optomechanical cavity is derived, which is well described by the two-mode Gaussian state. The irreversibility and quantum mutual information associated with the driving the system far from equilibrium are found to be controlled by the phase and strength of nonlinearity. This analysis shows that the system entropy flow, heating, or cooling, are determined by choosing the appropriate phase of the self-induced nonlinearity. It is further demonstrated that this effect persists for a reasonable range of cavity decay rate.  相似文献   

12.
13.
(火积)的微观表述   总被引:3,自引:0,他引:3       下载免费PDF全文
程雪涛  梁新刚  徐向华 《物理学报》2011,60(6):60512-060512
在近独立粒子组成的系统中,Boltzmann发现了系统熵与其微观状态数的对数之间的正比关系,为熵这一物理概念提供了微观解释,Planck将其总结为著名的Boltzmann熵公式S = k lnΩ.与此对应,给出了单原子理想气体系统中(火积)的微观表达式,证明了(火积)为广延量. 分析讨论了孤立系统从不平衡态发展到热平衡态过程中系统微观状态数、熵、(火积)的变化情况,结果表明在该过程中系统的微观状态数、熵向着增加方向发展,而(火积)则向着减小方向发展,从而在微观角度 关键词: 微观状态数 熵 (火积) 不可逆性  相似文献   

14.
从不可逆过程热力学的角度研究了铁电相变中的不可逆性.一级铁电相变中的热滞及铁电体的多畴结构,可以在最小熵产生原理的基础上得到说明.并得出结论,热滞并不是一级铁电相变体系的内禀性质,体系表面的有限性与热滞是有关的. 关键词: 热滞 畴构型 不可逆性 最小熵产生  相似文献   

15.
16.
谢志堃  余国祥  刘成周 《物理学报》2010,59(6):4390-4394
依据全息原理,通过计算Gibbons-Maeda dilaton黑洞事件视界上量子场的统计熵,得到了该黑洞的全息熵和Bekenstein-Hawking熵.计算中利用非对易量子场论,克服了普通量子场论中态密度在视界上的发散困难,避免了黑洞熵热气体方法中紫外截断的引入.用留数定理克服了计算中的积分困难,所得的结果定量成立.研究表明,黑洞熵可以视为其视界上量子场的熵;通过计算视界上量子态的统计熵可以得到黑洞熵,计算中可以且应该避免视界外量子态的影响. 关键词: 黑洞熵 全息原理 事件视界 非对易量子场论  相似文献   

17.
We propose the study of quantum games from the point of view of quantum information theory and statistical mechanics. Every game can be described by a density operator, the von Neumann entropy and the quantum replicator dynamics. There exists a strong relationship between game theories, information theories and statistical physics. The density operator and entropy are the bonds between these theories. The analysis we propose is based on the properties of entropy, the amount of information that a player can obtain about his opponent and a maximum or minimum entropy criterion. The natural trend of a physical system is to its maximum entropy state. The minimum entropy state is a characteristic of a manipulated system, i.e., externally controlled or imposed. There exist tacit rules inside a system that do not need to be specified or clarified and search the system equilibrium based on the collective welfare principle. The other rules are imposed over the system when one or many of its members violate this principle and maximize its individual welfare at the expense of the group.  相似文献   

18.
Here a novel applications of entropy generation optimization is presented for nonlinear Sisko nanomaterial flow by rotating stretchable disk. Flow is examined in the absence of magnetohydrodynamics and Joule heating. Total irreversibility rate (entropy generation rate) is investigated for different flow parameters. Heat source/sink and viscous dissipation effects are considered. Impacts of Brownian motion and thermophoresis on irreversibility have been analyzed. Governing flow equations comprise momentum, energy and nanoparticle concentration. Von Karman's similarity variables are implemented for reduction of PDEs into ODEs. Homotopy analysis technique for series solutions is implemented. Attention is given to the irreversibility. The impacts of different flow parameters on velocity, nanoparticle concentration, temperature and irreversibility rate are graphically presented. From obtained results it is examined that irreversibility rate enhances for larger estimation of Brinkman number and diffusion. Furthermore it is also examined that temperature and nanoparticle concentration show contrast behavior through Prandtl number and Brownian motion.  相似文献   

19.
Entropy generation analysis of the flow boiling in microgravity field is conducted in this paper. A new entropy generation model based on the flow pattern and the phase change process is developed in this study. The velocity ranges from 1 m/s to 4 m/s, and the heat flux ranges from 10,000 W/m2 to 50,000 W/m2, so as to investigate their influence on irreversibility during flow boiling in the tunnel. A phase–change model verified by the Stefan problem is employed in this paper to simulate the phase–change process in boiling. The numerical simulations are carried out on ANSYS-FLUENT. The entropy generation produced by the heat transfer, viscous dissipation, turbulent dissipation, and phase change are observed at different working conditions. Moreover, the Be number and a new evaluation number, EP, are introduced in this paper to investigate the performance of the boiling phenomenon. The following conclusions are obtained: (1) a high local entropy generation will be obtained when only heat conduction in vapor occurs near the hot wall, whereas a low local entropy generation will be obtained when heat conduction in water or evaporation occurs near the hot wall; (2) the entropy generation and the Be number are positively correlated with the heat flux, which indicates that the heat transfer entropy generation becomes the major contributor of the total entropy generation with the increase of the heat flux; (3) the transition of the boiling status shows different trends at different velocities, which affects the irreversibility in the tunnel; (4) the critical heat flux (CHF) is the optimal choice under the comprehensive consideration of the first law and the second law of the thermodynamics.  相似文献   

20.
The Carnot cycle and the attendant notions of reversibility and entropy are examined. It is shown how the modern view of these concepts still corresponds to the ideas Clausius laid down in the nineteenth century. As such, they reflect the outmoded idea, current at the time, that heat is motion. It is shown how this view of heat led Clausius to develop the entropy of a body based on the work that could be performed in a reversible process rather than the work that is actually performed in an irreversible process. In consequence, Clausius built into entropy a conflict with energy conservation, which is concerned with actual changes in energy. In this paper, reversibility and irreversibility are investigated by means of a macroscopic formulation of internal mechanisms of damping based on rate equations for the distribution of energy within a gas. It is shown that work processes involving a step change in external pressure, however small, are intrinsically irreversible. However, under idealised conditions of zero damping the gas inside a piston expands and traces out a trajectory through the space of equilibrium states. Therefore, the entropy change due to heat flow from the reservoir matches the entropy change of the equilibrium states. This trajectory can be traced out in reverse as the piston reverses direction, but if the external conditions are adjusted appropriately, the gas can be made to trace out a Carnot cycle in P-V space. The cycle is dynamic as opposed to quasi-static as the piston has kinetic energy equal in difference to the work performed internally and externally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号