首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We consider the system of free scalar field, which is assumed to be a two-mode squeezed state from an inertial point of view. This setting allows the use of entanglement measure for continuous variables, which can be applied to discuss free and bound entanglement from the point of view from non-inertial observer.  相似文献   

2.
J. Nie 《Optics Communications》2009,282(7):1478-1481
In this paper, we investigate two aspects of entanglement properties of the ground state for the Dicke model with the dipole-dipole interaction between the atoms in the thermodynamic limit, and observe how they are affected by the quantum phase transition. The appearance of dipole-dipole interactions between the atoms does not change the maximum atom-field entanglement at the critical point, while it changes the maximum atom-atom entanglement at the critical point, and has an important influence on the atom-atom entanglement behavior.  相似文献   

3.
We consider the influence of the local squeezed vacuum fields on two initially entangled two-qubit system. By considering the upper bound of entanglement under time evolution, we find that the decay of the quantum entanglement shows different behavior for different time scales (t?max{(2βA)−1,(2βB)−1}t?max{(2βA)−1,(2βB)−1} and t?min{(2βA)−1,(2βB)−1}t?min{(2βA)−1,(2βB)−1}). The relative phase of the squeezing environment can also affect the entanglement dynamics profoundly.  相似文献   

4.
Using the two-mode two-photon Jaynes-Cummings model, entanglement transfer between atoms and field is studied. It is found that when the field is in state constructed from the two-mode photon number states |00〉,|11〉 or the two-mode squeezed vacuum states, full entanglement exchange can be attained no matter the atoms are initially in pure or mixed states. These investigations show that CV entangled states can act as perfectly as the entangled number states in entangling initially separable atoms. The two-mode two-photon atom-field interaction also provides a simple way for the quantum teleportation of atomic or field states.  相似文献   

5.
Corresponding to the Fresnel transform there exists a unitary operator in quantum optics theory, which could be known the Fresnel operator (FO). We show that the multiplication rule of the FO naturally leads to the quantum optical ABCD law. The canonical operator methods as mapping of ray-transferABCD matrix is explicitly shown by the normally ordered expansion of the FO through the coherent state representation and the technique of integration within an ordered product of operators. We show that time evolution of the damping oscillator embodies the quantum optical ABCD law.  相似文献   

6.
We show that two evanescently coupled χ(2) parametric oscillators provide a tunable bright source of quadrature squeezed light, Einstein-Podolsky-Rosen correlations and quantum entanglement. Analysing the system in the above threshold regime, we demonstrate that these properties can be controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with integrated optics, it provides a possible route to rugged and stable EPR sources.  相似文献   

7.
In this communication we introduce a new model which represents the interaction between an atom and two fields injected simultaneously within a cavity including the nonlinear couplers. By using the canonical transformation the model can be regarded as a generalization of several well-known models. We calculate and discuss entanglement between the tripartite system of one atom and the two cavity modes. For a short interaction time, similarities between the behavior based on our solution compared with the other simulation based on a numerical linear algebra solution of the original Hamiltonian with truncated Fock bases for each mode, is shown. For a specific value of the Kerr-like medium defined in this letter, we find that the entanglement, as measured by concurrence, may terminate abruptly in a finite time.  相似文献   

8.
This communication is an enquiry into the circumstances under which concurrence and phase entropy methods can give an answer to the question of quantum entanglement in the composite state when the photonic band gap is exhibited by the presence of photonic crystals in a three-level system. An analytic approach is proposed for any three-level system in the presence of photonic band gap. Using this analytic solution, we conclusively calculate the concurrence and phase entropy, focusing particularly on the entanglement phenomena. Specifically, we use concurrence as a measure of entanglement for dipole emitters situated in the thin slab region between two semi-infinite one-dimensionally periodic photonic crystals, a situation reminiscent of planar cavity laser structures. One feature of the regime considered here is that closed-form evaluation of the time evolution may be carried out in the presence of the detuning and the photonic band gap, which provides insight into the difference in the nature of the concurrence function for atom-field coupling, mode frequency and different cavity parameters. We demonstrate how fluctuations in the phase and number entropies affected by the presence of the photonic-band-gap. The outcomes are illustrated with numerical simulations applied to GaAs. Finally, we relate the obtained results to instances of any three-level system for which the entanglement cost can be calculated. Potential experimental observations in solid-state systems are discussed and found to be promising.  相似文献   

9.
A scheme is proposed for generating three-dimensional maximally entangled states for two atoms. In the scheme the atoms are trapped in a two-mode cavity. The scheme only requires a single resonant interaction of the atoms with the cavity modes. Therefore, the scheme is very simple and required interaction time is very short, which is important in view of decoherence.  相似文献   

10.
We propose an optical scheme to generate cluster states of atomic qubits, with each trapped in separate optical cavity, via atom-cavity-laser interaction. The quantum information of each qubit is encoded on the degenerate ground states of the atom, hence the entanglement between them is relatively stable against spontaneous emission. A single-photon source and two classical fields are employed in the present scheme. By controlling the sequence and time of atom-cavity-laser interaction, we show that the atomic cluster states can be produced deterministically.  相似文献   

11.
We propose an optical scheme for the generation of the cluster-type entangled coherent states in free travelling optical fields via cross-Kerr nonlinearity. The required resources for the generation are coherent state source, beam splitters, photodetectors, and Kerr media. We also discuss the implementation of the Hadamard gate operation for coherent states and the homodyne detection.  相似文献   

12.
梁林梅  李承祖 《中国物理快报》2004,21(12):2338-2339
We present rotationally invariant proof of Bell‘s theorem without inequalities for spin-(2N 1)/2system (N = 2k-1,k = 1, 2, 3, 4...) with only two particles, which is a generalization of Cabello‘s study [Phys. Rev. A 67 (2003)032107].  相似文献   

13.
The effects of atmospheric turbulence on the entanglement of spatial two-qubit states that are prepared using the signal and idler photons produced by parametric down-conversion are studied. Utilizing the non-Kolmogorov model for atmospheric turbulence and Rytov approximation method, we quantify the effects of atmospheric turbulence on the entanglement of the two-qubit state in terms of Wootters's concurrence. Our results show that the effects of the zenith angle of communication channel and the outer scale of turbulence on the concurrence of a spatial two-qubit state can be ignored and the smaller inner scale of turbulence, the smaller refractive-index power α, the shorter wavelength of beams and the longer propagation distance will lead to the larger fluctuations of the concurrence of a spatial two-qubit state.  相似文献   

14.
The dynamics of entanglement between three-level atoms coupled to the common vacuum is investigated. We show that the collective effects such as collective damping, dipole-dipole interaction and the cross coupling between orthogonal dipoles, play a crucial role in the process of creation of entanglement. In particular, the additional cross coupling enhances the production of entanglement. For the specific initial states we find that the effect of delayed sudden birth of entanglement, recently invented by Ficek and Tana? [Ficek, R. Tana?, Phys. Rev. A 77 (2008) 054301] in the case of two-level atoms, can also be observed in the system. When the initial state is entangled, the process of spontaneous emission causes destruction of correlations and its disentanglement. We show that the robustness of initial entanglement against the noise can be changed by local operations performed on the state.  相似文献   

15.
Xiao-yu Chen 《Physics letters. A》2008,372(17):2976-2979
We analyze the entanglement condition of a new kind of non-Gaussian quantum state, which is prepared by photon number subtraction from the two mode squeezed thermal state. Fock space criterion and Shchukin-Vogel criterion are applied, and they give the same condition which is also that of the input state.  相似文献   

16.
We elucidate the dependence of purity and entanglement of two-photon states generated by spontaneous parametric down-conversion on the parameters of the source, such as crystal length, pump beam divergence, frequency bandwidth, and detectors angular aperture. The effect of crystal anisotropy is taken into account. Numerical simulations are presented for two types of commonly used source configurations.  相似文献   

17.
We study an analytically solvable model for decoherence of a two spin system embedded in a large spin environment. As a measure of entanglement, we evaluate the concurrence for the Bell states (Einstein-Podolsky-Rosen pairs). We find that while for two separate spin baths all four Bell states lose their coherence with the same time dependence, for a common spin bath, two of the states decay faster than the others. We explain this difference by the relative orientation of the individual spins in the pair. We also examine how the Bell inequality is violated in the coherent regime. Both for one bath and two bath cases, we find that while two of the Bell states always obey the inequality, the other two violate the inequality at early times.  相似文献   

18.
In this paper, the effect of quantum interference on the entanglement of a driven V-type three-level atom and its spontaneous emission field was investigated by using the quantum entropy. The results indicate that, in the absence of quantum interference the atom and its spontaneous emission field are always entangled at the steady-state. But, in the presence of full quantum interference their steady-state entanglement depends on the atomic parameters. Specifically, with appropriate atomic parameters they can be entangled or disentangled at the steady-state. We realized that the steady-state entanglement is due to completely destructive nature of quantum interference. On the contrary, the steady-state disentanglement is due to instructive nature of quantum interference.  相似文献   

19.
We investigate the entanglement and the nonlocality of two qubits interacting with a thermal reservoir. It is shown that the time behavior of these quantities exhibits a strong dependence on the initial state of two qubits, and that the entanglement and the nonlocality of two qubits can be manipulated by changing the relative phases and the amplitudes of the polarized qubits.  相似文献   

20.
We present an interesting monogamy equation for (2⊗2⊗n)-dimensional pure states, by which a quantity is found to characterize the tripartite entanglement with the GHZ type and W type entanglements as a whole. In particular, we, for the first time, reveals that for any quantum state of a pair of qubits, the difference between the two remarkable entanglement measures, concurrence and negativity, characterizes the W type entanglement of tripartite pure states with the two-qubit state as reduced density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号