首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of chelate complexes between free radicals and closed-shell metal ions is observed by ESR. spectroscopy. High resolution spectra of 1:1 complexes formed between the radical anion of glyoxal-bis-(N-t-butylimine) (GLIR) and Mg2+, Ca2+ and Zn2+ are completely analysed. The complexes formed in dimethoxyethane or tetrahydrofuran solutions are Ca(GLIR)+, Mg(GLIR)X, Zn (GLIR)X and Zn(GLIR)Y?2, where X = Cl?, Br?, I?, and Y = CN?, NCS?. The formation of the heterometallic, binuclear cyanide-bridged complex Zn(GLIR)Fe(CN)63? is also described. Isotropic coupling constants are given for protons and 14N in GLIR as well as for the metal nuclei and magnetic nuclei in the groups X and Y. Stabilities, structures and ESR. parameters of these radical complexes are discussed.  相似文献   

2.
In a search for environmentally friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of [S,S,S]- and [R,S,R]-isomers of N-bis[2-(1,2-dicarboxyethoxy)ethyl] aspartic acid (BCA6) with Mg(II), Ca(II), Mn(II), Fe(III), Cu(II) and Zn(II) ions in aqueous 0.1 M NaCl solution were studied at 25°C by potentiometric titration. The model for complexation and the stability constants of the different complexes were determined for each metal ion using the computer program SUPERQUAD. With all metal ions (M n+), stable ML n?6 complexes dominated complex formation for both isomers. Differences in complexation models were found for binuclear species.  相似文献   

3.
The metal ions Co(II), Ni(II), Zn(II), Zr(IV), and Hg(II) reacted with synthesized Schiff base (L) in mole ratios 1:2 (M:L) formed metal complexes. The structure of the prepared compounds was identified based on the data obtained from elemental analyses, magnetic measurement, melting point, conductivity, Fourier-transform infrared, UV–Vis., nuclear magnetic resonance spectroscopy, X-ray diffraction (XRD) spectra, and thermal analysis (TG/DTG [thermogravimetric/differential thermal analysis]). The results indicate that the L bound as bidentate through the oxygen atom of the hydroxyl group and nitrogen atom of the azomethine group with the metal ions and the complexes is electrolyte in nature. TG/DTG studies confirmed the chemical formula for complexes. The kinetic and thermodynamic parameters such as E*, ΔH*, ΔS*, and ΔG* were determined by using Coats–Redfern and Horowitz–Metzger methods at n = 1 and n ≠ 1. The XRD patterns exhibited a semicrystalline nature lying between the amorphous and crystalline nature for L, (D), and (E), but the complexes (A), (B), and (C) possessed a crystalline character. Density functional theory confirmed the structural geometry of the complexes. In vitro antimicrobial activities were performed for L and its metal complexes.  相似文献   

4.
The isolation and characterization of some dipositive metal ions-ATP complexes have been described. The isolated solid compounds have the composition Na2M(ATP)nH2O where n = 2 for M = Ca(II), Mn(II), Fe(II), Co(II), Zn(II) and VO2+; n = 3 for M = Mg(II), and n = 4 for M = Ni(II), Hg(II) and Pd(II), or Na2M3(ATP)26H2O where M = Cu(II) and Cd(II), whereas dioxouranium(VI) ion affords NaUO2(ATPH)2H2O. The water soluble complexes exhibit 2:1 electrolytic behaviour which is in conformity with the constitutions suggested. The magnetic susceptibilities of the Mn(II), Fe(II), Co(II) and Ni(II) complexes suggest that they have the pseudo-octahedral geometry which fact is supported for Ni(II) and Co(II) compounds by the electronic spectra. The Dq value of ATP4− calculated from the ligand field spectra suggest that its position in the spectrochemical series should be very close to that of H2O. IR spectra suggest that in most of the cases the metal ions are linked both to the phosphates and to the bases [N(7)] of the adenosine-5′-triphosphate molecule.  相似文献   

5.
Negative chemical ionization mass spectrometry is used as a probe to examine reactions between hydrocarbon radicals and metal complexes in the gas phase. The methane negative chemical ionization mass spectra of 27 complexes of cobalt(II ), nickel(II ) and copper(II ) in the presence of O4, O2N2 and N4 donor atom sets are characterized by two dominant series of adduct ions of the form [M + CnH2n]? and [M + CnH2n+1]? at m/z values above the molecular ion, [M]?. Insertion of the CH radical into the ligand followed by radical/radical recombination and electron capture is proposed as the major mechanism leading to the formation of [M + CnH2n]? adduct ions. A second pathway involves ligand substitution by CnH2n+1 radicals concomitant with H elimination and electron capture. Oxidative addition at the metal followed by ionization is suggested as the principal pathway for the formation of [M + CnH2n+1]? adduct ions.  相似文献   

6.
The ability to incorporate functional metal ions (Mn+) into metal–organic coordination complexes adds remarkable flexibility in the synthesis of multifunctional organic–inorganic hybrid materials with tailorable electronic, optical, and magnetic properties. We report the cation-exchanged synthesis of a diverse range of hollow Mn+-phytate (PA) micropolyhedra via the use of hollow Co2+-PA polyhedral networks as templates at room temperature. The attributes of the incoming Mn+, namely Lewis acidity and ionic radius, control the exchange of the parent Co2+ ions and the degree of morphological deformation of the resulting hollow micropolyhedra. New functions can be obtained for both completely and partially exchanged products, as supported by the observation of Ln3+ (Ln3+=Tb3+, Eu3+, and Sm3+) luminescence from as-prepared hollow Ln3+-PA micropolyhedra after surface modification with dipicolinic acid as an antenna. Moreover, Fe3+- and Mn2+-PA polyhedral complexes were employed as magnetic contrast agents.  相似文献   

7.
It has previously been shown that recombinant synthesis, under metal‐supplemented conditions, of diverse metallothioneins (MTs) results in the recovery of a subpopulation of S2?‐containing complexes in addition to the S2?‐devoid canonical metal–MT species. Further significance of this finding has remained veiled by the possibility of it being a mere consequence of synthesis in a heterologous bacterial system. Herein, we present definitive evidence that S2? ligands are also constituents of native metal–MT complexes. Because, although practically universal, the highest S2? content is incorporated by copper‐thioneins when coordinating divalent metal ions, we adapted the Saccharomyces cerevisiae Cup1 protein, which is the most paradigmatic copper‐thionein, as an experimental model. Most significantly, native Cd–Cup1 complexes were purified and fully spectroscopically and spectrometrically characterized from the 301N mutant yeast strain, which allows Cup1 synthesis even in the absence of copper. These results undoubtedly revealed the presence of a Cd–S2?–Cup1 species in native preparations, which were only recovered when carefully avoiding the use of ion‐exchange chromatography in the purification protocol. Furthermore, complete analysis of recombinant (Escherichia coli) Zn–Cup1, Cd–Cup1, and Cu–Cup1 and those complexes that result from Zn/Cd and Zn/Cu replacements in vitro and acidification/renaturalization processes yielded a comprehensive and comparative overview of the metal‐binding abilities of Cup1. Overall, we consider the main conclusions of this study to go beyond the mere study of the particular Cup1 MT, so that they should be considered to delineate a new point of view on the interaction between copper‐thioneins and divalent metal ions, still an unexplored aspect in MT research.  相似文献   

8.
Co(II), Cu(II), Zn(II), and Fe(III) complexes of phenylthiourea have been synthesized and characterized by elemental analyses, molar conductivity, magnetic susceptibility, FT-IR, and electronic spectroscopy. The spectroscopic data of the complexes are consistent with four-coordinate geometry for the metal(II) complexes and six-coordinate octahedral for the Fe(III) complex. Single crystal X-ray analysis of the Zn(II) complex revealed distorted tetrahedral geometry around the metal ion with two molecules of phenylthiourea and two acetate ions. The in vitro antibacterial activity of the complexes was studied against six bacterial strains using disc diffusion and broth microdilution methods. The complexes showed selective antibacterial activity against Staphylococcus aureus and Bacillus pumilus when compared to standard antibiotic ampicillin. The minimum inhibitory concentrations of the sensitive compounds are between 0.625 and 5.0 mg mL?1.  相似文献   

9.
The liquid-liquid extraction behavior of Hg(II) from aqueous acidic chloride solutions has been investigated by tracer techniques using dialkylsulphides (R2S) namely, dibutylsulphide (DBS) and dioctylsulphide (DOS) as extractants. These extraction data have been analyzed by both graphical and theoretical methods by taking into account complexation of the metal ion in the aqueous phase with inorganic ligands and all plausible complexes extracted into the organic phase. The results clearly indicate that Hg(II) is extracted into xylene as HgCl2 . nDBS/nDOS (where n = 2 and 3). The equilibrium constants of the extracted complexes have been deduced by non-linear regression analysis. The separation possibilities of Hg(II) from other metal ions viz. Ca(II), Mg(II), Ba(II) and Fe((III), which are present in the industrial wastes of the chlor-alkali industry has also been discussed.  相似文献   

10.
The Cd(II)-, Pb(II)-, Ni(II)- and Zn(II)-complexes of small terminally protected peptides containing CXXX, XXXC, XCCX, CXnC (n=1–3) sequences have been studied with potentiometric, UV/Vis and CD spectroscopic techniques. The cysteine thiolate group is the primary binding site for all studied metal ions, but the presence of a histidyl or aspartyl side chain in the molecule contributes to the stability of the complexes. For two-cysteine containing peptides the (S,S) coordinated species are formed in the physiological pH range and the stability increases in the Ni(II)<Zn(II)<Pb(II)<Cd(II) order. As a conclusion, the inserting of −CXXC− sequence into the peptide makes the synthesis of peptides with high selectivity to toxic Cd(II) or Pb(II) ion possible. In addition, the spectroscopic characterization of these complexes can contribute to the discovery of the exact binding site and binding mode of longer peptides mimicking the biologically important proteins.  相似文献   

11.
Synthesis and characterization of benzyl-monohydrazone-3-hydrazino-4-benzyl-6-phenyl pyridazine (BHP) and its complexes with copper(II), nickel(II), cobalt(II), zinc(II), manganese(II), cadmium(II), thorium(IV), dioxyuranium(VI), samarium(III) and erbium(III) are presented. The protonation equilibrium of BHP ion and complex formation equilibrium with the metal ions have been studied by potentiometry in 75% (v/v) dioxane-water and 0.10M KNO3 at different temperatures (10, 20, 30 and 40°C). A series of mononuclear complexes [ML n ](1? z )+ (L? =?BHP and n =?1 ??z) were found in solution and their formation constants, enthalpies and entropies were determined.

The solid metal complexes and corresponding thermal products were elucidated by elemental analysis, conductance, IR and electronic spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy. The use of BHP as analytical reagents for the determination of copper(II), nickel(II) and cobalt(II) as well as extracting agents for these metal ions are discussed.  相似文献   

12.
Complexation of zinc(II) and cadmium(II) ions with 2,2-bipyridine (bpy) are studied in N,N-dimethylacetamide (DMA) by calorimetry. Formation constants, enthalpies, and entropies of five mononuclear complexes, [Zn(bpy)n]2+ (n=1–3) and [Cd(bpy)n]2+ (n=1,2), are determined, and compared with the corresponding values in an analogous but less bulky solvent, N,N-dimethylformamide (DMF). The zinc complexes are more stable and the formation is more exothermic in DMA than in DMF, whereas the solvent effect on the cadmium complexes are rather small. A largely positive value of the enthalpy of transfer of Zn2+ from DMF to DMA shows that the greater stability of the zinc complexes in DMA is due to the weaker solvation of the metal ion, which is caused by the steric hindrance of DMA molecules. The transfer enthalpies become smaller in the order Zn2+>[Zn(bpy)]2+>[Zn(bpy)2]2+>[Zn(bpy)3]2+ and dictate gradual relaxation of the steric effect in the complexes. On the other hand, the transfer enthalpies of Cd2+ and its complexes are all small, indicating that the hindrance is insignificant in the vicinity of this larger cation.  相似文献   

13.
The synthesis of poly(N‐acryloylpiperazine) was carried out by radical polymerization giving a yield of 90%. The polymer was soluble in water and was characterized by FTIR, 1H NMR, 13C NMR spectroscopy, and TGA. The metal ability binding properties for the Ag(I), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Cr(III) metal ions in the aqueous phase were investigated using the liquid‐phase polymer‐based retention (LPR) method. The metal ion interactions with the hydrophilic polymers were determined as a function of pH and filtration factor.  相似文献   

14.
Complexes derived from ampicillin (L1) and amoxicillin (L2) with (Mg(II), Ca(II), Zn(II), Cu(II), Ni(II), Co(II), Ce(III), Nd(III), UO2(VI), Th(IV)) were prepared and characterized by elemental analysis, electrical conductivity measurements, magnetic susceptibility, IR, UV/Vis, and thermogravimetry. The formed complexes can be formulated as (ML(H2O)3(NO3) n ) except for Ce(III) which gave (CeL(H2O)3(Cl)2). The 1H NMR spectra of the Zn(II) complexes are compared to spectra of the ligands. The shift (δ) gave information about the chelating center of the ligands. The ligands and the synthesized complexes, derived from some alkali earth and transition metal ions, were tested as antibacterial reagents. The formed complexes had enhanced activity.  相似文献   

15.
Formation and low energy collision-induced dissociation (CID) of doubly charged metal(II) complexes ([metal(II)+L n ]2+, metal(II)=Co(II), Mn(II), Ca(II), Sr(II) and L = acetonitrile, pyridine, and methanol) were investigated. Complexes of [metal(II)+L n ]2+ where n≤7 were obtained using electrospray ionization. Experimental parameters controlling the dissociation pathways for [Co(II)+(CH3CN)2]2+ were studied and a strong dependence of these processes on the collision energy was found. However, the dissociation pathways appear to be independent of the cone potential, indicating low internal energy of the precursor ions. In order to probe how these processes are related to intrinsic parameters of the ligand such as ionization potential and metal ion coordination, low energy CID spectra of [metal(II)+L n ]2+ for ligands such as acetonitrile, pyridine, and methanol were compared. For L = pyridine, all metals including the alkaline earth metals Ca and Sr were reduced to the bare [metal(I)]+ species. Hydride transfer was detected upon low energy CID of [metal(II)+L n ]2+ for metal(II)=Co(II) and Mn(II) and L = methanol, and corroborated by signals for [metal(II)+H?]+ and [metal(II)+H?+CH3OH]+, as well as by the complementary ion [CH3O]+.  相似文献   

16.
Schiff-base complexes [ML(H2O)2(Ac)]nH2O (M?=?Co(II), Ni(II) and Zn(II); L?=?Schiff-base ligand derived from 2-acetylpyridine and alanine and n?=?1–3/2) were synthesized and characterized by elemental analysis, spectral (FTIR, UV/Vis, MS, 1H-NMR), thermal (TGA), conductance and magnetic moment measurements. The results suggest octahedral geometry for all the isolated complexes. IR spectra show that the ligand coordinates to the metal ions as mononegative tridentate through pyridyl nitrogen, azomethine nitrogen and carboxylate oxygen after deprotonation of the hydroxyl group. Semi-empirical calculations PM3 and AM1 have been used to study the molecular geometry and the harmonic vibrational spectra to assist the experimental assignments of the complexes.  相似文献   

17.
2‐Mercaptopyridine N ‐oxide (pyrithione, PTOH) along with several transition metal ions forms coordination compounds displaying notable biological activities. Gas‐phase complexes formed between pyrithione and manganese (II), cobalt (II), nickel (II), copper (II), and zinc (II) were investigated by infusion in the electrospray source of a quadrupole‐time of flight mass spectrometer. Remarkably, positive ion mode spectra displayed the singly charged metal adduct ion [C10H8MN2O2S2]2+ ([M(PTO)2]+• or [M(DPTO)]+•), where DPTO is dipyrithione, 2,2′‐dithiobis(pyridine N ‐oxide), among the most abundant peaks, implying a change in the oxidation state of whether the metal ion or the ligands. In addition, doubly charged ions were recognized as metal adduct ions containing DPTO ligands, [M(DPTO)n]2+. Generation of [M(PTO)2]+• / [M(DPTO)]+• could be traced by CID of [M(DPTO)2]2+, by observation of the sequential losses of a charged (PTO+) and a radical (PTO) deprotonated pyrithione ligand. The fragmentation pathways of [M(PTO)2]+• / [M(DPTO)]+• were compared among the different metal ions, and some common features were noticed. Density functional theory (DFT) calculations were employed to study the structures of the observed adduct ions, and especially, to decide in the adduct ion [M(PTO)2]+• / [M(DPTO)]+• whether the ligands are 2 deprotonated pyrithiones or a single dipyrithione as well as the oxidation state of the metal ion in the complex. Characterization of gas‐phase pyrithione metal ion complexes becomes important, especially taking into account the presence of a redox‐active ligand in the complexes, because redox state changes that produce new species can have a marked effect on the overall toxicological/biological response elicited by the metal system.  相似文献   

18.
Proton-ligand association constants of 1-benzoyl(1,2,4-triazol-3-yl)thiourea (BTTU) and its complex formation constants with some bivalent metal ions Ni(II), Co(II), Mn(II), Zn(II), and Cu(II), have been determined potentiometrically in 50% EtOH–H2O and 0.1 M NaNO3. The complexes formed in solution have a stoichiometry of 1:1 and 1:2 [M:L], where M represents the metal ion and L the BTTU ligand. The corresponding thermodynamic parameters are derived and discussed. The complexes are stabilized by enthalpy changes and the results suggest that complexation is an enthalpy-driven process. The effects of metal ion, ionic radius, electronegativity, and nature of ligand on the formation constants are discussed. The formation constants of the complexes with 3d transition metals follow the order Mn2+ < Co2+ < Ni2+ < Cu2+ > Zn2+. The metal complexes were synthesized and characterized by elemental analyses, conductance, IR, 1H NMR, and magnetic measurements. The low magnetic moment of 0.11 BM for the Cu(II) complex is suggestive of dimerization through Cu–Cu interaction. The concentration distribution diagrams of the complexes were evaluated. The ligands and their metal complexes have been screened in vitro against some bacteria and fungi.  相似文献   

19.
The structure of aqua complexes of alkali metal ions Me+(H2O) n , n = 1−6, where Me is Li, Na, K, Rb, and Cs, and complexes of 2,6-dimethylphenolate anion (CH3)2PhO selected as a model of the elementary unit of phenol-formaldehyde ion exchanger with hydrated alkali metal cations Me+(H2O) n , n = 0−5, was studied by the density functional method. The energies of successive hydration of the cations and the energies of binding of alkali metal hydrated cations with (CH3)2PhO depending on the number of water molecules n were calculated. It was shown that the dimethylphenolate ion did not have specific selectivity with respect to cesium and rubidium ions. The energies of hydration and the energies of binding of alkali metal cations with (CH3)2PhO decreased in the series Li+ > Na+ > K+ > Rb+ > Cs+ as n increased. The conclusion was drawn that the reason for selectivity of phenol-formaldehyde and other phenol compounds with respect to cesium and rubidium ions was the predomination of the ion dehydration stage in the transfer from an aqueous solution to the phenol phase compared with the stage of binding with ion exchange groups.  相似文献   

20.
Several new transition metal complexes derived from 4,5-dimethyl-3-carboxaldehyde phenyl- thiosemicarbazone, LH, have been synthesized. The complexes are of stoichiometry, [CoL2]X, X = Cl, Br, ClO4 or NO3, [MnL2] and [CuXnLm], X = Cl, Br, NCS or N3; n = 1 or 0; m = 1 or 2 and L = the anion of LH. All complexes have been characterized by elemental analysis, spectral (i.r., electronic, NMR, ESR) and magnetic measurements. The ligand acts as tridentate monobasic co-ordinated to the metal ion via azomethine, pyrazole (N2) nitrogen atoms and the thiolo-sulphur. The ligand field and ESR parameters are used to interpret the nature of bonding of LH with the metal ion, ground state and the ligand field strength of LH and the various co-ordinated simple ions. The coupling constants of various co-ordinated nuclei with copper (II) are estimated from ESR spectra of copper (II) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号