首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
We have investigated the effect of Ge, GePt underlayers on the formation of ordered L10 FePt films. With Ge underlayer, the Ge3Pt2 compound was formed during post-annealing at 400 °C for 1 h. Interlayer diffusion of Ge and FePt layer suppress the formation of ordered L10 FePt phase. With Ge2Pt3 underlayer, the FePt film was ordered at 350 °C and the in-plane coercivity was 5.1 kOe. The ordering temperature was reduced to about 50 °C compared to the single-layer FePt film.  相似文献   

2.
FePt multilayer films with and without Al underlayer were prepared by magnetron sputtering on SiO2 substrate and subsequently annealed in vacuum. Experimental results suggest that the existence of Al underlayer can effectively reduce the ordering temperature and increase the coercivity of FePt films. Due to the slight larger lattice constant of Al underlayer than that of FePt films, [Fe (0.66 nm)/Pt (0.84 nm)]30 films begin to order at 350 °C and the coercivity of them reach to 5.7 kOe after annealing at 400 °C for half an hour.  相似文献   

3.
Electron beam induced deposition was performed using a Pt(PF3)4 precursor gas. Self-standing nanowires were produced on the edge of a molybdenum film, followed by two post-deposition processes; electron beam irradiation at room temperature and heating at about 400 K in vacuum. The as-deposited nanowires were composed of an amorphous phase, of which the dominant composition was platinum but containing a small amount of phosphorus impurity. After irradiating with a 300 keV electron beam, the amorphous nanowires were transformed to crystalline ones. By heating, the as-deposited nanowires became single-crystal platinum with a large grain size and the phosphorus content disappeared.  相似文献   

4.
We report the structural and magnetic properties of as-deposited and thermally annealed FePt/C granular multilayer films. The as-deposited system exhibits a disordered fcc FePt phase with an average grain size of 3 nm. Thermal annealing at 650 °C results in partial L10 ordering and an associated grain growth to 7 nm. Mössbauer measurements show that there is no non-magnetic component present, suggesting that carbon resides only in the grain boundary region. The ferromagnetic grains are magnetically decoupled.  相似文献   

5.
FePt multilayer composite films with and without B4C interlayer have been prepared by magnetron sputtering, respectively, and subsequent annealing in vacuum. It was found that the B4C layers effectively serve as spacers to separate the FePt layers, enhancing (0 0 1) orientation of FePt alloy. Our results show that highly (0 0 1) oriented FePt/B4C films have significant potential as perpendicular recording media.  相似文献   

6.
FePt/B4C multilayer films with different single FePt layer thickness were prepared by magnetron sputtering and subsequently annealing in vacuum. Influence of single FePt layer thickness on microstructure and magnetic property of FePt/B4C films is investigated. Experimental results suggest that the Fe and Pt rich regions will appear in the interior of single FePt layer. The increasing of FePt layer thickness leads to the increase of grain size and volume fraction of order phase f 0, which eventually induce satisfied coercivity (5.8 kOe).  相似文献   

7.
W.B. Mi 《Applied Surface Science》2006,252(24):8688-8694
FePt-C granular films doped with different Cu atomic fractions (xCu) were fabricated using facing-target sputtering at room temperature and subsequently annealed at 650 °C. Structural analyses reveal that the as-deposited films are in amorphous state. Appropriate Cu addition (xCu = 14) can improve the ordering of L10 FePt phase, and excessive Cu doping destroys the formation of ordered L10 phase with the appearance of Fe3C and CuPt phases. Besides, preferential graphitization of amorphous carbon (a-C) occurs near large metal particles upon annealing. Annealing turns the as-deposited superparamagnetic films into ferromagnetic associated with coercivity peaks at xCu = 14, drops from ∼11.2 kOe at 5 K to ∼7.2 kOe at 300 K in a 50 kOe field.  相似文献   

8.
FexPt100−x(30 nm) and [FexPt100−x(3 nm)/ZrO2]10 (x = 37, 48, 57, 63, 69) films with different ZrO2 content were prepared by RF magnetron sputtering technique, then were annealed at 550 °C for 30 min. This work investigates the effect of ZrO2 doping on the microstructural evolution, magnetic properties, grain size, as well as the ordering kinetics of FePt alloy films. The as-deposited films behaved a disordered state, and the ordered L10 structure was obtained by post-annealing. The magnetic properties of the films are changed from soft magnetism to hard magnetism after annealing. The variation of the largest coercivities of [FexPt100−x/ZrO2]10 films with the Fe atomic percentage, x and differing amounts of ZrO2 content reveals that as we increase the ZrO2 content we must correspondingly increase the amount of Fe. This phenomenon suggests that the Zr or O atoms of ZrO2 preferentially react with the Fe atoms of FePt alloy to form compounds. In addition, introducing the nonmagnetic ZrO2 can reduce the intergrain exchange interactions of the FePt/ZrO2 films, and the interactions are decreased as the ZrO2 content increases, the dipole interactions are observed in FePt/ZrO2 films as the ZrO2 content is more than 15%.  相似文献   

9.
We have explored the interlayer diffusion effect of Ge/FePt, GePt/FePt bilayer on the formation of ordered L10 FePt phase. In Ge/FePt bilayer, the Ge3Pt2 compound was formed during post annealing at 400oC for 1.0 h. Diffusion between Ge and FePt layer suppres the formation of ordered L10 FePt phase. With Ge2Pt3 underlayer, the FePt film was ordered at 400 °C and the in-plane coercivity was 9.3 kOe. The ordering temperature was reduced about 50 °C compared to the single layer FePt film.  相似文献   

10.
FePt (20 nm) films with AgCu (20 nm) underlayer were prepared on thermally oxidized Si (0 0 1) substrates at room temperature by using dc magnetron sputtering, and the films annealed at different temperature to examine the disorder–order transformation of the FePt films. It is found that the ordered L10 FePt phase can form at low annealing temperature. Even after annealing at 300 °C, the in-plane coercivity of 5.2 kOe can be obtained in the film. With increase in annealing temperature, both the ordering degree and coercivity of the films increase. The low-temperature ordering of the films may result from the dynamic stress produced by phase separation in AgCu underlayer and Cu diffusion into FePt phase during annealing.  相似文献   

11.
The L10 ordered FePt films have been prepared at 300 °C with a basic structure of CrRu/MgO/FePt, followed by a post-annealing process at temperatures from 200 to 350 °C. The magnetic properties and the microstructure of the films were investigated. It is found that coercivity of FePt films increases greatly from 3.57 to 9.1 kOe with the increasing annealing temperature from 200 to 350 °C. The loop slope of the M–H curves decreases with the increasing annealing temperature, which is due to the grain isolation induced by MgO underlayer diffusion during the annealing process. The underlayer diffusion could be a useful approach to prepare the FePt-based composite films for high-density recording media.  相似文献   

12.
In this paper we report results on the synthesis and magnetic properties of L10 FePt nanocomposite films. Three fabrication methods have been developed to produce high-anisptropy FePt films: non-epitaxial growth of (0 0 1)-oriented FePt:X (X=Ag, C) composite films that might be used for perpendicular media; monodispersed FePt(CFx) core–shell nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; and template-mediated self-assembled FePt clusters prepared with chemical synthesis by a hydrogen reduction technique, which has a high potential for controlling both cluster size and orientation. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. Analytical and numerical simulations have been done for these films, providing better understanding of the magnetization reversal mechanisms. The films show promise for development as magnetic recording media at extremely high areal densities.  相似文献   

13.
FePt/B4C multilayer composite films were prepared by magnetron sputtering and subsequent annealing in vacuum. By changing Fe layer thickness of [Fe/Pt]6/B4C films, optimal magnetic property (8.8 kOe and remanence squareness is about 1.0) is got in [Fe(5.25 nm)/Pt(3.75 nm)]6/B4C sample whose composition is Fe rich and near stoichiometric ratio. The characterizations of microstructure demonstrate that the diffusion of B and C atoms into FePt layer depends strongly on B4C interlayer thickness. When B4C interlayer thickness of [Fe(2.625 nm)/Pt(3.75 nm)/Fe(2.625 nm)/B4C]6 films is bigger than 3 nm, stable value of grain size (6-6.5 nm), coercivity (6-7 kOe) and hardness (16-20 GPa) is observed. Finally, the multifunctional single FePt/B4C composite film may find its way to substitute traditional three-layer structure commonly used in present data storage technology.  相似文献   

14.
The microstructure and magnetic properties of FePt films grown on Cr and CrW underlayers were investigated. The FePt films that deposited on Cr underlayer show (2 0 0) orientation and low coercivity because of the diffusion between FePt and Cr underlayer. The misfit between FePt magnetic layer and underlayer increases by small addition of W element in Cr underlayer or using a thin Mo intermediate layer, which is favorable for the formation of (0 0 1) orientation and the transformation of FePt from fcc to fct phase. A good FePt (0 0 1) texture was obtained in the films with Cr85W15 underlayer with substrate temperature of 400 °C. The FePt films deposited on Mo/Cr underlayer exhibit larger coercivity than that of the films grown on Pt/Cr85W15 because 5 nm Mo intermediate layer depressed the diffusion of Cr into magnetic layer.  相似文献   

15.
Co50Fe50 films with thickness varying from 100 to 500 Å were deposited on a glass substrate by sputtering process, respectively. Two kinds of CoFe films were studied: one was the as-deposited film, and the other the annealed film. The annealing procedure was to keep the films at 400 °C for 5 h in a vacuum of 5×10−6 mbar. From the X-ray study, we find that the as-deposited film prefers the CoFe(1 1 0) orientation. Moreover, the body-centered cubic (bcc) CoFe(1 1 0) line is split into two peaks: one corresponding to the ordered body-centered tetragonal (bct) phase, and the other, the disordered bcc phase. After annealing, the peak intensity of the ordered bct phase becomes much stronger, while that of the disordered bcc phase disappears. The annealing has also caused the ordered CoFe(2 0 0) line to appear. When the amount of the ordered bct phase in Co50Fe50 is increased, the saturation magnetization (Ms) and coercivity (Hc) become larger, but the electrical resistivity (ρ) decreases. From the temperature coefficient of resistance (TCR) measurement, we learn that the bct grains in the CoFe film start to grow at temperature 82 °C.  相似文献   

16.
W.B. Mi 《Applied Surface Science》2006,253(4):1830-1835
N-doped FePt-C nanocomposite films were fabricated using facing-target sputtering method under different N2 partial pressures (PN) at room temperature. Annealing at 650 °C turns the amorphous films into ordered structures. Nitrogen doping not only make the ordering of FePt particles easier than the ordering in FePt-C films, due to the enhanced diffusivity of Fe and Pt atoms, but also effectively limits the growth of the FePt particles during the thermal induced ordering, especially for the annealed films fabricated at PN = 40%, where the average size of well-isolated FePt particles is only ∼8 nm. The particle size reduction and the enhanced diffusion of Fe and Pt atoms can be ascribed to the desorption of doped N atoms and dissociation of FeN bonds during annealing. The room-temperature coercivity of the samples decreases with the PN due to the particle size reduction and thus the enhancement of the thermal agitation for small particles during the magnetizing procedure.  相似文献   

17.
(Fe50Pt50)100−x-(SiO2)x films (x=0–30 vol%) were grown on a textured Pt(0 0 1)/CrRu(0 0 2) bilayer at 420 °C using glass substrates. FePt(0 0 1) preferred orientation was obtained in the films. Interconnected microstructure with an average grain size of about 30 nm is observed in the binary FePt film. As SiO2 is incorporated, it precipitates as particles are dispersed at FePt grain boundaries. When the content of SiO2 is increased to 13 vol%, columnar FePt with (0 0 1) texture separated by SiO2 is attained. The FePt columns have a length/radius ratio of 2:1. Additionally, the mean grain size is reduced to about 13 nm. The development of this well-isolated columnar structure leads to an enhancement in coercivity by about 44% from 210 to 315 kA/m. As the SiO2 content exceeds 20 vol%, a significant ordering reduction is found accompanied by a transformation of preferred orientation from (0 0 1) to (2 0 0) and the columnar structure disappears, resulting in a drastic degradation in magnetism. The results of our study suggest that isolated columnar, grain refined, (0 0 1)-textured FePt film can be achieved via the fine control of SiO2 content. This may provide useful information for the design of FePt perpendicular recording media.  相似文献   

18.
冯春  李宝河  韩刚  滕蛟  姜勇  刘泉林  于广华 《物理学报》2006,55(12):6656-6660
利用磁控溅射的方法,在玻璃基片上制备了以Bi为底层的FePt薄膜,经不同温度真空热处理得到L10-FePt薄膜.研究了Bi做底层对FePt薄膜的有序化温度及矫顽力Hc的影响.实验结果表明:以Bi做底层的FePt薄膜在350℃实现低温有序,同时其Hc也有大幅度提高,并且可以在更大成分范围内获得Hc较高的L10-FePt薄膜.利用X射线光电子能谱研究了薄膜中Bi原子的分布情况,利用X射线衍射研究了薄膜的晶体学结构变化.结果表明,Bi底层在退火过程中的扩散促进了FePt薄膜有序度的升高. 关键词: 0-FePt薄膜')" href="#">L10-FePt薄膜 有序化温度 底层 扩散  相似文献   

19.
Chemical bath deposition of ZnS thin films from NH3/SC(NH2)2/ZnSO4 solutions has been studied. The effect of various process parameters on the growth and the film quality are presented. The influence on the growth rate of solution composition and the structural, optical properties of the ZnS thin films deposited by this method have been studied. The XRF analysis confirmed that volume of oxygen of the as-deposited film is very high. The XRD analysis of as-deposited films shows that the films are cubic ZnS structure. The XRD analysis of annealed films shows the annealed films are cubic ZnS and ZnO mixture structure. Those results confirmed that the as-deposited films have amorphous Zn(OH)2. SEM studies of the ZnS thin films grown on various growth phases show that ZnS film formed in the none-film phase is discontinuous. ZnS film formed in quasi-linear phase shows a compact and a granular structure with the grain size about 100 nm. There are adsorbed particles on films formed in the saturation phase. Transmission measurement shows that an optical transmittance is about 90% when the wavelength over 500 nm. The band gap (Eg) value of the deposited film is about 3.51 eV.  相似文献   

20.
The phase composition, crystal structure, and magnetic properties of films of the ordered alloys FePd, FePt, and Fe50Pd50 − x Pt x , where x = 1–10 at %, were analyzed. The spectral dependences of the magnetic rotation and optical absorption were taken. The effect of heat treatment on the crystal structure, magnetization, and coercive field strength of the ordered alloy films was studied. The influence of the degree of atomic ordering on the perpendicular magnetic anisotropy was investigated. It was shown that films of ordered FePd and FePt alloys of equiatomic composition and films of Fe50Pd50 − x Pt x , where x = 1–10 at %, can serve as media for magnetic and thermomagnetic data recording and storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号