首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ring opening polymerization of ε-caprolactone (CL) was initiated by glycol and yttrium tri(2,6-di-tert-butyl-4-methylphenolate)s (Y(OAr)3), preparing dihydroxy-capped poly (ε-caprolactone) (PCL) with controllable molecular weight. 1H NMR and SEC analyses indicate that two kinds of active species and corresponding PCL with different structures exist in the system. Increasing the ratio of glycol to Y(OAr)3 benefits the formation of monofunctional active species. However, poly(ethylene glycol) (PEG)/Y(OAr)3 system only contains sole bifunctional active species to synthesize copolymer of CL with PEG (poly(CL-b-PEG-b-CL)). Dihydroxycapped PCL as macroinitiator can further initiate the polymerization of 2,2-dimethyltrimethylene carbonate (DTC). Thus, triblock copolymer of CL with DTC (poly(DTC-b-CL-b-DTC)) has been prepared.  相似文献   

2.
An end‐π‐allylnickel macroinitiator ( 3 ) was prepared by the reaction of poly(ethylene glycol) allenyl methyl ether with an excess amount (5 equiv) of [(π‐allyl)NiOCOCF3]2 ( 1 ) in the presence of PPh3 ([PPh3]/[ 1 ] = 1). The resulting macroinitiator was used as an initiator for the polymerization of 1‐phenylethyl isonitrile ( 4a ) to give a block copolymer [poly(ethylene glycol)‐block‐poly( 4a )]. The molecular weight and composition of the block copolymers were controlled by the molecular weight of 3 and the ratio of 4a to 3 . © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 495–499, 2001  相似文献   

3.
The influence of the initiator structure on the reaction process was investigated. In addition to the initiator concentration, its molar mass and the content of perester groups in the single molecule are determining factors that influence the course of reaction. Quantitative relationships are shown. The initiator is bonded by grafting reactions on the surface of the latex particles. The grafted moiety is dependent on the initiator structure and reaction temperature. Latices with polydispersities lower than 1.1 are obtained. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2045–2054, 1999  相似文献   

4.
Biodegradable and biomimetic SPCL-PLAMA biohybrids were synthesized via ATRP and characterized by FT-IR, (1)H NMR, GPC and DSC. Biohybrids with small PDI were obtained, and the block length of the PLAMA glycopolymer could be varied linearly by the varying the molar ratio of glycomonomer to macroinitiator. The outer PLAMA glycopolymer restrained the crystallization of inner PCL segments. The self-assembly properties of amphiphilic biohybrids were studied. Lactose-installed aggregates were fabricated in aqueous solution; they changed from spherical micelles to vesicles with increasing weight fraction of hydrophobic PCL. The SPCL-PLAMA biohybrids showed specific recognition for RCA(120) lectin.  相似文献   

5.
The effect of substituents on the electropolymerization of benzene derivatives and the redox properrties of the corresponding polymers were determined using Brown's substituent constants (σ+). Electron-donating groups lower the oxidation potential by which increase in the current efficiency was observed. However, stabilization of the produced cation radicals by the electron-donating groups resulted in a decrease in the polymerization efficiency. The appropriate values of σ+ for the efficient polymerization ranged near ?1.5.  相似文献   

6.
The photodegradation of a 1:1 w/w blend of polycaprolactone and poly(vinyl chloride) has been studied by following carbon dioxide emission during UV exposure. Similar measurements were performed for polycaprolactone and poly(vinyl chloride) homopolymers which were prepared and irradiated in the same way. It was found that the blend gave lower CO2 emission than either of the two homopolymers, indicating that the interaction of the two components in the blend provided a beneficial reduction of photodegradation. It is therefore deduced that the detailed morphological characteristics of the blend have a controlling influence over the photo-oxidation.  相似文献   

7.
The polymerization of poly(vinyl chloride) (PVC), head-to-head macroradical plays an essential role in the formation of branches and the appearance of interruption processes that lead to labile unsaturated end groups. A reaction mechanism is suggested to explain these processes and the method of formation of internal double bonds as a result of transfer to polymer. The transfer to monomer can occur only by atom acceptance by the macroradical and not by the monomer giving up an atom.  相似文献   

8.
Short-term hydrolytic and enzymatic degradation of poly(ε-caprolactone) (PCL), one series of triblock (PCL/PEO/PCL) and the other of diblock (PCL/PEO) copolymers, with a low content of hydrophilic PEO segments is presented. The effect of the introduction of PEO as the central or lateral segment in the PCL chain on copolymer hydrolysis and biodegradation properties was investigated. FTIR results revealed higher hydrolytic degradation susceptibility of diblock copolymers due to a higher hydrophilicity compared to PCL and triblock copolymers. Enzymatic degradation was tested using cell-free extracts of Pseudomonas aeruginosa PAO1, for two weeks by following the weight loss, changes in surface roughness, and changes in carbonyl and crystallinity index. The results confirmed that all samples underwent enzymatic degradation through surface erosion which was accompanied with a decrease in molecular weights. Diblock copolymers showed significantly higher weight loss and decrease in molecular weight in comparison to PCL itself and triblock copolymers. AFM analysis confirmed significant surface erosion and increase in RMS values. In addition, biodegradation of polymer films was tested in compost model system at 37 °C, where an effective degradation of block copolymers was observed.  相似文献   

9.
Superhydrophobic polycaprolactone (PCL) membranes with hierarchical structure were fabricated via alternate electrospinning/electrospraying techniques. Electrospun PCL/methyl silicone oil (PCL/MSO) nanofibers were employed as substrate. PCL/MSO‐PCL microspheres (PCL/MSO‐PCLMS) hierarchical membrane was prepared via electrosprayed PCLMS as an additional layer on the substrate. Field emission scanning electron microscopy images showed the formation of hierarchical PCL/MSO‐PCLMS membranes. Compared to pure PCL fibers substrate (120 ± 1.3°), the water contact angle (WCA) of MSO‐modified PCL membrane was 142 ± 0.7°. The most interesting observation was that the WCA of PCLMS without any modification could be achieved to 146 ± 2.8°. On this basis, PCL/MSO‐PCLMS hierarchical membrane possessed superhydrophobic surface with 150 ± 0.6° of WCA. The excellent surface roughness and air‐pocket capacity of hierarchical membranes would make the membranes more hydrophobic. The maximum oil (n‐hexane) adsorption capacity of PCL/MSO‐PCLMS membrane was 32.53 g g?1. Oil–water separation efficiencies of the superhydrophobic membranes were all higher than 99.93% after 10 cycles. The hierarchically structured PCL superhydrophobic membranes indicate the potential applications of environmentally friendly biopolymers as separation membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 421–430  相似文献   

10.
Syndiotactic poly(methyl methacrylate) (st-PMMA) macromonomer having methacryloyl end group was prepared from st-PMMA living anion and separated into uniform macromonomers by means of supercritical fluid chromatography. A uniform macromonomer with the degree of polymerization of 32 was polymerized radically in benzene at 60°C. The uniform dimer, trimer and tetramer of the uniform macromonomer were isolated from the polymerization product by means of gel-permeation chromatography (GPC). The intrinsic viscosity ([η]) in tetrahydrofuran of these uniform comblike polymers was determined by GPC/differential viscometric analysis. The plot of logarithmic [η] against logarithmic molecular weight indicated that the trimer and tetramer assume a little shrinking molecular shape as compared with the unimer and dimer.  相似文献   

11.
A series of novel poly(ε-caprolactone-co-propylene succinate) P(CL-co-PSu) copolymers having low propylene succinate content and high molecular weight were synthesized following a combinatory scheme of ring opening and polycondensation reactions, in an attempt to obtain copolymers of sufficient performance and increased biodegradation rates. Enzymatic hydrolysis of the copolymers was studied in the presence of mixture of Rhizopus delemar and Pseudomonas cepacia lipases. Much higher hydrolysis rates, comparing to neat PCL, were proved by both mass loss measurements and scanning electron microscopy (SEM) observations of the degraded film surfaces. Thermodynamics of cocrystallization and wide-angle X-ray diffraction (WAXD) patterns were investigated to estimate the extent of comonomer cocrystallization. Results of the study showed that comonomer inclusion may hold, though the molar fraction of the comonomer in the PCL crystals is lower than in the bulk. This means that not only the observed decrease of the degree of crystallinity from about 48% for PCL to about 29% for the P(CL-co-PSu) 75/25 favours enzymatic hydrolysis, but also the enrichment of the amorphous phase in the fast degrading propylene succinate units plays its role. The non-isothermal crystallization rates of the copolymers, like the melting points, decreased substantially when the propylene succinate content exceeded 8 mol%. The activation energy of crystallization was calculated using the isoconversional method of Friedman, over the whole range of crystallization temperatures. An increase was found in the activation energy with increasing the comonomer content in the copolymers also proving the reduced symmetry along the copolymer chains due to the presence of comonomer units.  相似文献   

12.
Photoconductive poly(4-butyltriphenylamine) particles were prepared by a chemical oxidative dispersion polymerization. The utilization of statistical copolymer of methyl methacrylate with 2-hydroxyethyl methacrylate (30:70) as a dispersant afforded particles with the narrowest distribution when the other experimental conditions such as the rate of monomer feed, and the dispersant concentration were appropriately selected. Porous particles were obtained at 40 °C using poly(vinyl pyrrolidone) as a dispersant.  相似文献   

13.
Flurbiprofen loaded PCL/PVP blend microspheres were prepared by o/w solvent evaporation method using various concentrations of gelatin as emulsifying agent. Microsphere recovery decreased with a decrease in the concentration of the emulsifier in the dispersion. Encapsulation efficiency and drug loading of microspheres increased with decrease in concentration of emulsifying agent. Hydration rate, encapsulation efficiency and drug loading of microspheres increased with increase in concentration of PVP. Rheological properties showed free flowing nature of microspheres. SEM (Scanning electron microscope) revealed microspheres were discrete, spherical and became porous with decrease in concentration of emulsifying agent but smooth with higher concentration of emulsifying agent. FTIR (Fourier transform infrared spectroscopy) spectra of pure and encapsulated flurbiprofen in all formulation showed no significant difference in characteristic peaks, suggesting stability of flurbiprofen during encapsulation process. X-RD (X-ray powder diffractometry) of pure flurbiprofen shows sharp peaks, which decreases on encapsulation, indicating dispersion at molecular level and hence decrease in the crystallinity of drug in microspheres. Microspheres showed an enteric nature at pH 1.2 and a sustained release pattern at pH 6.8. Rapid drug release was observed in microspheres with higher concentration of PVP (polyvinylpyrrolidone), PVP acts as channeling agent. Formulation with low concentration of emulsifying agent also showed a fast release due to porous structure. Drug release kinetics followed zero order at pH 1.2 while at pH 6.8 Higuchi model was best fitted and was found non fickian.  相似文献   

14.
Using 2‐chloropropionamide derivative of poly(propyleneimine) dendrimer DAB‐dendr‐(NH2)32 (DAB‐32‐Cl) as the macroinitiator, atom transfer radical polymerization of styrene was successfully carried out in DMF medium. The monodisperse poly(propyleneimine)–polystyrene (dendrimer–PSt) particles with diameters smaller than 100 nm could be prepared. The morphology, size, and size distribution of the dendrimer–PSt particles were characterized by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). The effects of reaction temperature, the ratio of St/macroinitiator, and reaction time on the size, and size distribution of the dendrimer–PSt nanoparticles were investigated. In a selective solvent (DMF/H2O), polymers can self‐assemble into different aggregate configurations such as regular microsphere and wire‐like thread. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2658–2666, 2008  相似文献   

15.
Anthracene-labelled poly(methyl methacrylate) (PMMA) was prepared via atom transfer radical polymerization (ATRP) where 9,10-bis(chloromethyl)anthracene and CuCl/2,2′-bipyridine were used as the initiator and catalyst, respectively. Both the linear increase of the number average molecular mass with conversion and the narrow polydispersity in the resulting polymers suggest that the polymerization proceeds in a “living” fashion and the anthracene molecule is incorporated into the middle of the polymer backbone. The initiation efficiency was low, ca. 13%, presumably due to some side reactions which compete with the initiation reaction.  相似文献   

16.
17.
Various amounts of hydroxy terminated PDMS were linked into PLLA chains via in-situ ring opening polymerization at a very low content of SnOt2. The 1H and FTIR spectra provided evidence for the incorporation of the PDMS in the PLLA chains. The molecular weights, Tg, Tm, crystallinity and the heats of fusion decreased as the feed mole ratio of PDMS/LLA in the block copolymer increased. The molecular weight distribution broadened as the content of the PDMS increased, due the occurrence of two initiation and propagation mechanisms. Linking PDMS into the PLLA chains improved its thermal stability. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
A well‐defined and monofunctional poly(3‐hexylthiophene)‐based (P3HT) macroinitiator has been obtained through a clean, simple, and an efficient multistep synthesis process. The macroinitiator is obtained via intermolecular radical 1,2‐addition onto an ω‐acrylate‐terminated P3HT macromonomer. In a second step, well‐defined rod‐coil block copolymers were obtained by nitroxide‐mediated radical polymerization (NMRP) using the so‐called Blocbuilder®. The polymerization was found to be controlled with various monomers such as styrene, isoprene, 4‐vinylpyridine, or methyl acrylate. This process constitutes a very promising way to obtain versatile and clean materials for organic electronics. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Poly(vinyl chloride) latexes have been prepared by polymerization in micron and submicron sized monomer droplets. Monomer emulsions with excellent long time stability were obtained by diffusional swelling of vinyl chloride monomer into preformed, stable polydisperse pre-emulsions of water-insoluble oils or monodisperse, oligomer styrene seed particles. It was found that the size and size distribution of the final latex particles were determined by those of the parent monomer emulsions. Except for the secondary particles formed during polymerization, the size and size distributions of the latex particles were found to be com-parable to those of the monomer emulsions employed, indicating a complete nucleation of the parent emulsion droplets. The extent of secondary particle formation was found to be very dependent upon the emulsifier concentration as well as on the type and amount of initiator used. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
New, water soluble poly(glycidol) (PGl) macroinitiators for atom transfer radical polymerization (ATRP) were synthesized. This new class of macroinitiators were prepared in a three‐step process. First, series of well‐defined ω‐hydroxyl functional poly(glycidol acetal)s with different molecular weights was synthesized via anionic polymerization followed by quantitative termination of anionically growing active sites. End capping was achieved by treatment of living chain ends with water. The living nature of the system and termination reaction is discussed. In the second stage, monofunctional poly(glycidol acetal)s were functionalized by esterification with 2‐chloropropionyl chloride. Finally, selective deprotection (hydrolysis) of acetal protective groups was performed. As simultaneous partial cleavage of ester bond of attached ATRP moieties was unavoidable, the final functionality of macroinitiator calculated from 1H NMR varied in the range 85–95%. The obtained (2‐chloropropionyl) poly(glycidol) macroinitiator with DP = 55 and 90% functionality was successfully used in ATRP polymerization of N‐isopropylacrylamide (NIPAAm) at room temperature in the DMF/water mixture. Linear block copolymers with relatively narrow molecular weight distribution and controlled composition were obtained and characterized with 1H NMR and SEC‐MALLS measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2488–2499, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号