首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Copolymers of acrylamide (AM) and N,N-dimethylacrylamide (DMA) with AM to DMA molar ratios of 3:1, 2:1 and 1:1 and molecular weights of about 2.2 MDa were synthesized. The polymers were tested as separation media in DNA sequencing analysis by capillary electrophoresis (CE). The dynamic coating ability of polydimethylacrylamide (PDMA) and the hydrophilicity of polyacrylamide (PAM) have been successfully combined in these random copolymers. A separation efficiency of over 10 million theoretical plates per meter has been reached by using the bare capillaries without the additional polymer coating step. Under optimized separation conditions for longer read length DNA sequencing, the separation ability of the copolymers decreased with decreasing AM to DMA molar ratio from 3:1, 2:1 and 1:1. In comparison with PAM, the copolymer with a 3:1 AM:DMA ratio showed a higher separation efficiency. By using a 2.5% w/v copolymer with 3:1 AM:DMA ratio, one base resolution of 0.55 up to 699 bases and 0.30 up to 963 bases have been achieved in about 80 min at ambient temperatures.  相似文献   

2.
Buchholz BA  Barron AE 《Electrophoresis》2001,22(19):4118-4128
The ability of a polymer matrix to separate DNA by capillary electrophoresis (CE) is strongly dependent upon polymer physical properties. In particular, recent results have shown that DNA sequencing performance is very sensitive to both the average molar mass and the average coil radius of the separation matrix polymers, which are affected by both polymer structure and polymer-solvent affinity. Large polymers with high average molar mass provide the best DNA sequencing separations for CE, but are also the most challenging to characterize with accuracy. The methods most commonly used for the characterization of water-soluble polymers with application in microchannel electrophoresis have been gel permeation chromatography (GPC) and intrinsic viscosity measurements, but the limitations and potential inaccuracies of these approaches, particularly for large or novel polymers and copolymers, press the need for a more universally accurate method of polymer molar mass profiling for advanced DNA separation matrices. Here, we show that multi-angle laser light scattering (MALLS) measurements, carried out either alone or in tandem with prior on-line sample fractionation by GPC, can provide accurate molar mass and coil radius information for polymer samples that are useful for DNA sequencing by CE. Wider employment of MALLS for characterization of novel polymers designed as DNA separation matrices for microchannel electrophoresis should enable more rapid optimization of matrix properties and formulation, and assist in the development of novel classes of polymer matrices.  相似文献   

3.
Physically adsorbed (dynamic) polymeric wall coatings for microchannel electrophoresis have distinct advantages over covalently linked coatings. In order to determine the critical factors that control the formation of dynamic wall coatings, we have created a set of model polymers and copolymers based on N,N-dimethylacrylamide (DMA) and N,N-diethylacrylamide (DEA), and studied their adsorption behavior from aqueous solution as well as their performance for microchannel electrophoresis of DNA. This study is revealing in terms of the polymer properties that help create an "ideal" wall coating. Our measurements indicate that the chemical nature of the coating polymer strongly impacts its electroosmotic flow (EOF) suppression capabilities. Additionally, we find that a critical polymer chain length is required for polymers of this type to perform effectively as microchannel wall coatings. The effective mobilities of double-stranded (dsDNA) fragments within dynamically coated capillaries were determined in order to correlate polymer hydrophobicity with separation performance. Even for dsDNA, which is not expected to be a strongly adsorbing analyte, wall coating hydrophobicity has a deleterious influence on separation performance.  相似文献   

4.
In an earlier study we showed that a blend of thermoresponsive and nonthermoresponsive hydroxyalkylcelluloses could be used to create a thermally tunable polymer network for double-stranded (ds) DNA separation. Here, we show the generality of this approach using a family of polymers suited to a wider range of DNA separations: a blended mixture of N,N-dialkylacrylamide copolymers with different thermoresponsive behaviors. A mixture of 47% w/w N,N-diethylacrylamide (DEA)/53% w/w N,N-dimethylacrylamide (DMA) (DEA47; thermoresponsive, transition temperature = 55 degrees C in water) and 30% w/w DEA/70% w/w DMA (DEA30; nonthermoresponsive, transition temperature > 85 degrees C in water) copolymers in the ratio of 1:5 w/w DEA47:DEA30 was used to separate a dsDNA restriction digest (PhiX174-HaeIII). We investigated the effects of changing mesh size on dsDNA separation, as controlled by temperature. We observed good DNA separation performance with the copolymer blend at temperatures ranging from 25 degrees C to 48 degrees C. The separation selectivity was evaluated quantitatively for certain DNA fragment pairs as a function of temperature. The results were compared with those obtained with a control matrix consisting only of the nonthermoresponsive DEA30. Different DNA fragment pairs of various sizes show distinct temperature-dependent selectivities. Over the same temperature range, no significant temperature dependence of selectivity is observed for these DNA fragment pairs in the nonthermoresponsive control matrix. Overall, the results show similar trends in the temperature dependency of separation selectivity to what was previously observed in hydroxyalkylcellulose blends, for the same DNA fragment pairs. Finally, we showed that a ramped temperature scheme enables improved separation in the blended copolymer matrix for both small and large DNA fragments, simultaneously in a single capillary electrophoresis (CE) run.  相似文献   

5.
Read length in DNA sequencing by capillary electrophoresis at elevated temperatures is shown to be greatly affected by the extent of hydrophobicity of the polymer separation matrix. At column temperatures of up to 80 degrees C, hydrophilic linear polyacrylamide (LPA) provides superior read length and separation speed compared to poly(N,N-dimethylacrylamide) (PDMA) and a 70:30 copolymer of N,N-dimethylacrylamide and N,N-diethylacrylamide (PDEA30). DNA-polymer and polymer intramolecular interactions are presumed to be a major cause of band broadening and the subsequent loss of separation efficiency with the more hydrophobic polymers at higher column temperatures. With LPA, these interactions were reduced, and a read length of 1000 bases at an optimum temperature of 70 degrees -75 degrees C was achieved in less than 59 min. By comparison, PDMA produced a read length of roughly 800 bases at 50 degrees C, which was close to the read length attained in LPA at the same temperature; however, the migration time was approximately 20% longer, mainly because of the higher polymer concentration required. At 60 degrees C, the maximum read length was 850 bases for PDMA, while at higher temperatures, read lengths for this polymer were substantially lower. With the copolymer DEA30, read length was 650 bases at the optimum temperature of 50 degrees C. Molecular masses of these polymers were determined by tandem gel permeation chromatography-multiangle laser light scattering method (GPC-MALLS). The results indicate that for long read, rapid DNA sequencing and analysis, hydrophilic polymers such as LPA provide the best overall performance.  相似文献   

6.
In this work, a comparative study on the use of different polymers as physically adsorbed coatings for CE is presented. It is demonstrated that the use of ad hoc synthesized polymers as coatings allows tailoring the EOF in CE increasing the flexibility of this analytical technique. Namely, different polymers were synthesized at our laboratory using different percentages of ethylpyrrolidine methacrylate (EpyM) and N,N-dimethylacrylamide (DMA). Thus, by modifying the percentage of EpyM and DMA monomers it is possible to manipulate the positive charge of the copolymer, varying the global electrical charge on the capillary wall and with that the EOF. These coated capillaries are obtained by simply flushing a given EpyM-DMA aqueous solution into bare silica capillaries. It is shown that by using these coated capillaries at adequate pHs, faster or more resolved CE separations can be achieved depending on the requirements of each analysis. Moreover, it is demonstrated that these coated capillaries reduce the electrostatic adsorption of basic proteins onto the capillary wall. Furthermore, EpyM-DMA coatings allow the reproducible chiral separation of enantiomers through the partial filling technique (PFT). The EpyM-DMA coated capillaries are demonstrated to provide reproducible EOF values independently of the pH and polymer composition with%RSD values lower than 2% for the same day. It is also demonstrated that the coating procedure is reproducible between capillaries. The compatibility of this coating protocol with CE in microchips is discussed.  相似文献   

7.
Gao F  Tie C  Zhang XX  Niu Z  He X  Ma Y 《Journal of chromatography. A》2011,1218(20):3037-3041
The separation and sequencing of DNA are the main objectives of the Human Genome Project, and this project has also been very useful for gene analysis and disease diagnosis. Capillary electrophoresis (CE) is one of the most common techniques for the separation and analysis of DNA. DNA separations are usually achieved using capillary gel electrophoresis (CGE) mode, in which polymer gel is packed into the capillary. Compared with a traditional CGE matrix, a hydrophilic polymer matrix, which can be adsorb by the capillary wall has numerous advantages, including stability, reproducibility and ease of automation. Various water-soluble additives, such as linear poly(acrylamide) (PAA) and poly(N,N-dimethylacrylamide) (PDMA), have been employed as media. In this study, different star-shaped PDMA polymers were designed and synthesized to achieve lower polymer solution viscosity. DNA separations with these polymers avoid the disadvantages of high viscosity and long separation time while maintaining high resolution (10 bp between 271 bp and 281 bp). The influences of the polymer concentration and structure on DNA separation were also determined in this study; higher polymer concentration yielded better separation performance, and star-like polymers were superior to linear polymers. This work indicates that modification of the polymer structure is a potential strategy for optimizing DNA separation.  相似文献   

8.
Buchholz BA  Shi W  Barron AE 《Electrophoresis》2002,23(10):1398-1409
We review the variety of thermo-responsive and shear-responsive polymer solutions with "switchable" viscosities that have been proposed for application as DNA sequencing matrices for capillary and microfluidic chip electrophoresis. Generally, highly entangled polymer solutions of high-molar mass polymers are necessary for the attainment of long DNA sequencing read lengths (> 500 bases) with short analysis times (< 3 h). However, these entangled polymer matrices create practical difficulties for microchannel electrophoresis with their extremely high viscosities, necessitating high-pressure loading into capillaries or chips. Shear-responsive (shear-thinning) polymer matrices exhibit a rapid drop in viscosity as the applied shear force is increased, but still require a high initial pressure to initiate flow of the solution into a microchannel. Polymer matrices designed to have thermo-responsive properties display either a lowered (thermo-thinning) or raised (thermo-thickening) viscosity as the temperature of the solution is elevated. These properties are generally designed into the polymers by the incorporation of moderately hydrophobic groups in some part of the polymer structure, which either phase-separate or hydrophobically aggregate at higher temperatures. In their low-viscosity states, these matrices that allow rapid loading of capillary or chip microchannels under low applied pressure. The primary goal of work in this area is to design polymer matrices that exhibit this responsive behavior and hence easy microchannel loading, without a reduction in DNA separation performance compared to conventional matrices. While good progress has been made, thermo-responsive matrices have yet to offer sequencing performance as good as nonthermo-responsive networks. The challenge remains to accomplish this goal through the innovative design of novel polymer structures.  相似文献   

9.
A replaceable polymer matrix, based on the novel monomer N-hydroxyethylacrylamide (HEA), has been synthesized for application in DNA separation by microchannel electrophoresis. The monomer was found by micellar electrokinetic chromatography analysis of monomer partitioning between water and 1-octanol to be more hydrophilic than acrylamide and N,N-dimethylacrylamide. Polymers were synthesized by free radical polymerization in aqueous solution. The weight-average molar mass of purified polymer was characterized by tandem gel permeation chromatography-multiangle laser light scattering. The steady-shear rheological behavior of the novel DNA sequencing matrix was also characterized, and it was found that the viscosity of the novel matrix decreases by more than 2 orders of magnitude as the shear rate is increased from 0.1 to 1000 s(-1). Moreover, in the shear-thinning region, the rate of change of matrix viscosity with shear rate increases with increasing polymer concentration. Poly-N-hydroxyethylacrylamide (PHEA) exhibits good capillary-coating ability, via adsorption from aqueous solution, efficiently suppressing electroosmotic flow (EOF) in a manner comparable to that of poly-N,N-dimethylacrylamide. Under DNA sequencing conditions, adsorptive PHEA coatings proved to be stable and to maintain negligible EOF for over 600 h of electrophoresis. Resolution of DNA sequencing fragments, particularly fragments > 500 bases, in PHEA matrices generally improves with increasing polymer concentration and decreasing electric field strength. When PHEA is used both as a separation matrix and as a dynamic coating in bare silica capillaries, the matrix can resolve over 620 bases of contiguous DNA sequence within 3 h. These results demonstrate the good potential of PHEA matrices for high-throughput DNA analysis by microchannel electrophoresis.  相似文献   

10.
The novel polymer matrices reported here are low-viscosity sieving media for DNA capillary electrophoresis. This new family of matrices comprises copolymers of N,N-dimethylacrylamide with different monomers which increase polymer hydrophilicity. All these new copolymers self-coat on fused-silica capillaries. Resolution, peak spacing and peak width were the parameters taken into account to assess the influence of polymer structure on separation selectivity and efficiency. This work demonstrates that the performance of polydimethylacrylamide (PDMA) can be improved through copolymerization with hydrophilic monomers. The improvement is related to the efficiency parameter. The new copolymers, due to their low viscosity high sieving capacity and ability to suppress EOF, represent a better alternative to PDMA and are suitable replaceable matrices for capillary and microchip electrophoresis.  相似文献   

11.
A series of new poly[N-(2-hydroxypropyl)methacrylamide]-based amphiphilic copolymers were synthesized through a radical copolymerization of a monomeric/hydrophobic fluorophore possessing aggregation-induced emission (AIE) property with N-(2-hydroxypropyl)methacrylamide. Photophysical properties were investigated using UV-Vis absorbance and fluorescence spectrophotometry. Influences of the polymer structures with different molar ratios of the AIE fluorophores on their photophysical properties were studied. Results show that the AIE fluorophores aggregate in the cores of the micelles formed from the amphiphilic random copolymers and polymers with more hydrophobic AIE fluorophores facilitate stronger aggregations of the AIE segments to obtain higher quantum efficiencies. The polymers reported herein have good water solubility, enabling the application of hydrophobic AIE materials in biological conditions. The polymers were endocytosed by two experimental cell lines, human brain glioblastoma U87MG cells and human esophagus premalignant CP-A, with a distribution into the cytoplasm. The polymers are non-cytotoxic to the two cell lines at a polymer concentration of 1 mg/mL.  相似文献   

12.
In this work, the properties of four cationic copolymers synthesized in our laboratory are studied as physically adsorbed coatings for capillary electrophoresis (CE). Namely, the four copolymers investigated were poly(N-ethyl morpholine methacrylamide-co-N,N-dimethylacrylamide), poly(N-ethyl pyrrolidine methacrylate-co-N,N-dimethylacrylamide), poly(N-ethyl morpholine methacrylate-co-N,N-dimethylacrylamide) and poly(N-ethyl pyrrolidine methacrylamide-co-N,N-dimethylacrylamide). Capillaries were easily coated using these four different macromolecules by simply flushing into the tubing an aqueous solution containing the copolymer. The stability and reproducibility of each coating were tested for the same day, different days and different capillaries. It is demonstrated that the use of these coatings in CE can drastically reduce the analysis time, improve the resolution of the separations or enhance the analysis repeatability at very acidic pH values compared to bare silica columns. As an example, the analysis of an organic acids test mixture revealed that the analysis time was reduced more than 6-times whereas the separation efficiency was significantly increased to nearly 10-times attaining values up to 595,000 plates/m using the coated capillaries. Moreover, it was shown that all the copolymers used as coatings for CE allowed the separation of basic proteins by reducing their adsorption onto the capillary wall. Links between their molecular structure, physicochemical properties and their performance as coatings in CE are discussed.  相似文献   

13.
Zhou D  Wang Y  Yang R  Zhang W  Shi R 《Electrophoresis》2007,28(17):2998-3007
Gold nanoparticles (GNPs) with particle sizes of about 20, 40, and 60 nm were prepared and added into a quasi-interpenetrating network (quasi-IPN) composed of linear polyacrylamide (LPA) with different viscosity-average molecular masses of 1.5, 3.3, and 6.5 MDa and poly-N,N-dimethylacrylamide (PDMA) to form polymer/metal composite matrices, respectively. These novel matrices could improve ssDNA sequencing performances due to interactions between GNPs and polymer chains and the formation of physical cross-linking points as demonstrated by intrinsic viscosities and glass transition temperatures. The effects of the parameters in relation to quasi-IPN/GNPs matrices, such as GNP contents, GNP particle sizes, LPA molecular masses, and solution concentrations, on ssDNA sequencing performances were studied. In the presence of GNPs, the separation had the advantages of high resolution, speediness, excellent reproducibility, long shelf life and easy automation. Therefore, less viscous matrix solutions (with moderate size GNPs) due to lower solution concentration and lower-molecular-mass LPA could be used to replace more viscous solutions (without GNPs) due to higher solution concentration or higher-molecular-mass LPA to separate DNA, while the sieving performances were approximate even higher, which helped to achieve full automation especial for capillary array electrophoresis (CAE) and microchip electrophoresis (MCE).  相似文献   

14.
Although CE‐SSCP analysis combined with 16S ribosomal RNA gene‐specific PCR has enormous potential as a simple and versatile pathogen detection technique, low resolution of CE‐SSCP causes the limited application. Among the experimental conditions affecting the resolution, the polymer matrix is considered to be most critical to improve the resolution of CE‐SSCP analysis. However, due to the peak broadening caused by the interaction between hydrophobic moiety of polymer matrices and DNA, conventional polymer matrices are not ideal for CE‐SSCP analysis. A poly(ethyleneoxide)‐poly(propyleneoxide)‐poly(ethyleneoxide) (PEO‐PPO‐PEO) triblock copolymer, with dynamic coating ability and a propensity to form micelles to minimize exposure of hydrophobic PPO block to DNA, can be an alternative matrix. In this study, we examined the resolution of CE‐SSCP analysis using the PEO‐PPO‐PEO triblock copolymer as the polymer matrix and four same‐sized DNA fragments of similar sequence content. Among 48 commercially available PEO‐PPO‐PEO triblock copolymers, three were selected due to their transparency in the operable range of viscosity and PEO137PPO43PEO137 exhibited the most effective separation. Significant improvement in resolution allowed discrimination of the similar sequences, thus greatly facilitated CE‐SSCP analysis compared to the conventional polymer matrix. The results indicate that PEO‐PPO‐PEO triblock copolymer may serve as an ideal matrix for high‐resolution CE‐SSCP analysis.  相似文献   

15.
Zhou D  Wang Y  Zhang W  Yang R  Shi R 《Electrophoresis》2007,28(7):1072-1080
In order to further improve ssDNA sequencing performances using quasi-interpenetrating network (quasi-IPN) as a matrix composed of linear polyacrylamide (LPA) with lower viscosity-average molecular mass (3.3 MDa) and poly(N,N-dimethylacrylamide) (PDMA), gold nanoparticles (GNPs) were prepared and added into this quasi-IPN to form polymer/metal composite sieving matrices. The studies of intrinsic viscosity and differential scanning calorimetry (DSC) on quasi-IPN and quasi-IPN/GNPs indicate that there were interactions between GNPs and polymer chains. The sequencing performances on ssDNA using quasi-IPN and quasi-IPN/GNPs (with different GNPs concentrations) as sieving matrices were studied and compared by CE at different temperatures. The results show that resolutions of quasi-IPN/GNPs were higher than those of quasi-IPN without GNPs and approximated those of quasi-IPN composed of LPA with higher MW (6.5 MDa) and PDMA without GNPs in the bare fused-silica capillaries. Furthermore, the sequencing time of quasi-IPN/GNPs was shorter than that of quasi-IPN under the same sequencing conditions. The influences of GNPs and sequencing temperature on the sequencing performances of ssDNA were also discussed. The separation reproducibility of quasi-IPN/GNPs solution was excellent and its shelf life was more than 8 months.  相似文献   

16.
The rapid development of DNA capillary electrophoresis (CE) technology has increased the demand of new low viscosity sieving matrices with high separation capacity. The high throughput, resolution and automatic operation of CE systems have stimulated the application of the technique to different kinds of DNA analysis, including DNA sequencing, separation of restriction fragments, PCR products and synthetic oligonucleotides. In addition specific methods for PCR-based mutation assays for the study of known and unknown point mutations have been developed for use in CE. The key component for a large scale application of CE to DNA analysis is the availability of appropriate sieving matrices. This article gives an overview of the linear polymers used as DNA separation matrices with particular emphasis on the polymers that combine high sieving capacity, low viscosity and chemical resistance.  相似文献   

17.
A DNA synthesizer was successfully employed for preparation of well‐defined polymers by atom transfer radical polymerization (ATRP), in a technique termed AutoATRP. This method provides well‐defined homopolymers, diblock copolymers, and biohybrids under automated photomediated ATRP conditions. PhotoATRP was selected over other ATRP methods because of mild reaction conditions, ambient temperature, tolerance to oxygen, and no need to introduce reducing agents or radical initiators. Both acrylate and methacrylate monomers were successfully polymerized with excellent control in the DNA synthesizer. Diblock copolymers were synthesized with different targeted degrees of polymerization and with high retention of chain‐end functionality. Both hydrophobic and hydrophilic monomers were grafted from DNA. The DNA‐polymer hybrids were characterized by SEC and DLS. The AutoATRP method provides an efficient route to prepare a range of different polymeric materials, especially polymer‐biohybrids.  相似文献   

18.
In spite of the significant progresses in the field of replaceable sieving matrices for separating DNA in capillary electrophoresis (CE), an intense research activity is still going on to improve the separation of large size DNA sequencing fragments. There are evidences, both from experimental and theoretical sides that the resolution of these fragments, at the single base, requires the use of sieving matrices comprised of long chain linear polymers. In the separation of DNA fragments by CE are of upmost importance: (i) the complete solubility of the polymer, (ii) the linearity of the chain, (iii) the achievement of ultrahigh viscosity in dilute solutions. The aim of this work is the synthesis of ultrahigh-molecular-weight polymers which possess the three requirements mentioned above by employing a nonconventional method. We demonstrate that the sieving performance of polyacrylamide is directly correlated to its intrinsic viscosity.  相似文献   

19.
Song L  Liang D  Fang D  Chu B 《Electrophoresis》2001,22(10):1987-1996
Poly(N,N-dimethylacrylamide) (PDMA) with a molecular mass of 5.2 x 10(6) g/mol has been synthesized and used in DNA sequencing analysis by capillary electrophoresis (CE). A systematic investigation is presented on the effects of different separation conditions, such as injection amount, capillary inner diameter, polymer concentration, effective separation length, electric field and temperature, on the resolution. DNA sequencing up to 800 bases with a resolution (R) limit of 0.5 (and 1,000 bases with a resolution limit of 0.3) and a migration time of 96 min was achieved by using 2.5% w/v polymer, 150 V/cm separation electric field, and 60 cm effective separation length at room temperature on a DNA sample prepared with FAM-labeled--21M13 forward primer on pGEM3Zf(+) and terminated with ddCTP. Ultrafast and fast DNA sequencing up to 420 and 590 bases (R > or = 0.5) were also achieved by using 3% w/v polymer and 40 cm effective separation length with a separation electric field of 525 and 300 V/cm, and a migration time of 12.5 and 31.5 min, respectively. PDMA has low viscosity, long shelf life and dynamic coating ability to the glass surface. The unique properties of PDMA make it a very good candidate as a separation medium for large-scale DNA sequencing by capillary array electrophoresis (CAE).  相似文献   

20.
We synthesized cationic random amphiphilic copolymers by radical copolymerization of methacrylate monomers with cationic or hydrophobic groups and evaluated their antimicrobial and hemolytic activities. The nature of the hydrophobic groups, and polymer composition and length were systematically varied to investigate how structural parameters affect polymer activity. This allowed us to obtain the optimal composition of polymers suitable to act as non-toxic antimicrobials as well as non-selective polymeric biocides. The antimicrobial activity depends sigmoidally on the mole fraction of hydrophobic groups (fHB). The hemolytic activity increases as fHB increases and levels off at high values of fHB, especially for the high-molecular-weight polymers. Plots of HC50 values versus the number of hydrophobic side chains in a polymer chain for each polymer series showed a good correlation and linear relationship in the log–log plots. We also developed a theoretical model to analyze the hemolytic activity of polymers and demonstrated that the hemolytic activity can be described as a balance of membrane binding of polymers through partitioning of hydrophobic side chains into lipid layers and the hydrophobic collapsing of polymer chains. The study on the membrane binding of dye-labeled polymers to large, unilamellar vesicles showed that the hydrophobicity of polymers enhances their binding to lipid bilayers and induces collapse of the polymer chain in solution, reducing the apparent affinity of polymers for the membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号