首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Powder samples of the Cr6+-containing compound Bi6Cr2O15 were prepared by solid state reaction of Bi2O3 and Cr2O3 in air at 650°C. The structure was solved and refined using high-resolution neutron powder diffraction data in space group Ccc2, with anisotropic thermal displacement parameters a=12.30184(5), b=19.87492(7), and c=5.88162(2) Å, V=1438.0 Å3, and 126 variables to RF=1.8%. Bi6Cr2O15 exhibits a new structure type that contains (Bi12O14)8n+n columns, of the kind previously found only for phases isotypic with Bi13Mo4VO34. Each column is surrounded by eight CrO2−4 tetrahedra. The ionic conductivity of Bi6Cr2O15 was determined by impedance measurements to be 3.5×10−5 (Ω cm)−1 at 600°C.  相似文献   

2.
Single crystals of a new bismuth chromate, Bi8(CrO4)O11, were prepared by hydrothermal reaction of NaBiO3·nH2O in K2CrO4 solution. The bismuth chromate crystallizes in the monoclinic space group P21/m with a=9.657(3), b=11.934(3), c=13.868(2)Å and β=104.14(1)°, Z=4 and the final R factors are R=0.038 and Rw=0.041 for 3541 unique reflections. The crystal structure has a slab built up by (CrO4)2− tetrahedra and distorted bismuth polyhedra which are five-fold pyramids, six-fold trigonal prisms and octahedra. The distance of lone pair from nucleus for bismuth atoms ranges from 0.29 to 1.12 Å, depending on the coordination environment. Bi8(CrO4)O11 decomposes to Bi14CrO24 and a small amount of an unknown phase at 796 °C.  相似文献   

3.
A new quaternary lanthanide alkaline-earth tellurium(IV) oxide, La2Ba(Te3O8)(TeO3)2, has been prepared by the solid-state reaction and structurally characterized. The compound crystallizes in monoclinic space group C2/c with a=19.119(3), b=5.9923(5), c=13.2970(19) Å, β=107.646(8)°, V=1451.7(3) Å3 and Z=4. La2Ba(Te3O8)(TeO3)2 features a 3D network structure in which the cationic [La2Ba(TeO3)2]4+ layers are cross-linked by Te3O84− anions. Both band structure calculation by the DFT method and optical diffuse reflectance spectrum measurements indicate that La2Ba(Te3O8)(TeO3)2 is a wide band-gap semiconductor.  相似文献   

4.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

5.
Bi5AgNb4O18 is a new phase, which was discovered during the phase equilibrium study of the Bi2O3-Ag2O-Nb2O5 system. Bi5AgNb4O18 was prepared at 750°C and is stable in air up to its melting temperature of 1160.1±5.0°C (standard error of estimate). Results of a Rietveld refinement using neutron powder diffraction confirmed that Bi5AgNb4O18 is isostructural with Bi3TiNbO9, Bi5NaNb4O18, and Bi5KNb4O18. The structure was refined in the orthorhombic space group A21am, Z=2, and the lattice parameters are a=5.4915(2) Å, b=5.4752(2) Å, c=24.9282(8) Å, and V=749.52(4) Å3. The structure can be described as the m=2 member of the Aurivillius family, (Bi2O2)2+ (Am−1BmO3m+1)2− (where A=Bi and B=Ag, Nb), which is characterized by perovskite-like (Am−1BmO3m+1)2− slabs regularly interleaved with (Bi2O2)2+ layers. The octahedral [NbO6] units are distorted with Nb-O distances ranging from 1.856(4) to 2.161(2) Å and the O-Nb-O angles ranging from 82.6(3)° to 98.5(3)°. These octahedra are tilted about the a- and c-axis by about 10.3° and 12.4°, respectively. Ag was found to substitute exclusively into the Bi-site that is located in the layer between the two distorted [NbO6] units. Although the Ag substitutes into the Bi-site with the Bi:Ag ratio of 1:1, the existence of a superlattice was not detected using electron diffraction. A comparison of (Bi2O2)2+(Am−1NbmO3m+1)2− structures (where A=Ag, Na, and K) revealed a relation between the pervoskite tolerance factor, t, and structural distortion. The reference pattern for Bi5AgNb4O18 has been submitted to the International Centre for Diffraction Data (ICDD) for inclusion in the Powder Diffraction File.  相似文献   

6.
Two new compounds Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10 have been synthesized in the ternary system: MO-Bi2O3-V2O5 system (M=M2+). The crystal structure of Sr0.5Bi3V2O10 has been determined from single crystal X-ray diffraction data, space group and Z=2, with cell parameters a=7.1453(3) Å, b=7.8921(3) Å, c=9.3297(3) Å, α=106.444(2)°, β=94.088(2)°, γ=112.445(2)°, V=456.72(4) Å3. Ca0.5Bi3V2O10 is isostructural with Sr0.5Bi3V2O10, with, a=7.0810(2) Å, b=7.8447(2) Å, c=9.3607(2) Å, α=106.202(1)°, β=94.572(1)°, γ=112.659(1)°, V=450.38(2) Å3 and its structure has been refined by Rietveld method using powder X-ray data. The crystal structure consists of infinite chains of (Bi2O2) along c-axis formed by linkage of BiO8 and BiO6 polyhedra interconnected by MO8 polyhedra forming 2D layers in ac plane. The vanadate tetrahedra are sandwiched between these layers. Conductivity measurements give a maximum conductivity value of 4.54×10−5 and 3.63×10−5 S cm−1 for Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10, respectively at 725 °C.  相似文献   

7.
A melting and glass recrystallization route was carried out to stabilize a new tetragonal form of Bi2SiO5 with bismuth partially substituted by lanthanum. The crystal structure of Bi2−xLaxSiO5 (x∼0.1) was determined from powder X-ray and neutron diffraction data (space group I4/mmm, , c=15.227(1) Å, V=224.18 Å3, Z=2; reliability factors: RBragg=5.65%, Rp=14.6%, Rwp=16.8%, Rexp=8.3%, χ2=8.3 (X-ray) and RBragg=2.40%, Rp=8.1%, Rwp=7.5%, Rexp=4.2%, χ2=3.3 (neutrons); 11 structural parameters refined).The main effect of lanthanum substitution is to introduce, by removing randomly some bismuth 6s2 lone pairs, a structural disorder in the surroundings of (Bi2O2)2+ layers, that is in the (SiO3)2− pyroxene files arrangement. It results in a symmetry increase relatively to the parent compound Bi2SiO5, which is orthorhombic. The two structures are compared.  相似文献   

8.
Three new tellurites, LaTeNbO6 and La4Te6M2O23 (M=Nb or Ta) have been synthesized, as bulk phase powders and crystals, by using La2O3, Nb2O5 (or Ta2O5), and TeO2 as reagents. The structures of LaTeNbO6 and La4Te6Ta2O23 were determined by single crystal X-ray diffraction. LaTeNbO6 consists of one-dimensional corner-linked chains of NbO6 octahedra that are connected by TeO3 polyhedra. La4Te6M2O23 (M=Nb or Ta) is composed of corner-linked chains of MO6 octahedra that are also connected by TeO4 and two TeO3 polyhedra. In all of the reported materials, Te4+ is in an asymmetric coordination environment attributable to its stereo-active lone-pair. Infrared, thermogravimetric, and dielectric analyses are also presented. Crystallographic information: LaTeNbO6, triclinic, space group P−1, a=6.7842(6) Å, b=7.4473(6) Å, c=10.7519(9) Å, α=79.6490(10)°, β=76.920(2)°, γ=89.923(2)°, Z=4; La4Te6Ta2O23, monoclinic, space group C2/c, a=23.4676(17) Å, b=12.1291(9) Å, c=7.6416(6) Å, β=101.2580(10)°, Z=4.  相似文献   

9.
Two new quaternary strontium selenium(IV) and tellurium(IV) oxychlorides, namely, Sr3(SeO3)(Se2O5)Cl2 and Sr4(Te3O8)Cl4, have been prepared by solid-state reaction. Sr3(SeO3)(Se2O5)Cl2 features a three-dimensional (3D) network structure constructed from strontium(II) interconnected by Cl, SeO32− as well as Se2O52− anions. The structure of Sr4(Te3O8)Cl4 features a 3D network in which the strontium tellurium oxide slabs are interconnected by bridging Cl anions. The diffuse reflectance spectrum measurements and results of the electronic band structure calculations indicate that both compounds are wide band-gap semiconductors.  相似文献   

10.
The crystal structures of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m=3,4) have been investigated by the Rietveld analysis of their neutron powder diffraction patterns (λ=1.470 Å). These compounds belong to the Aurivillius phase family and are built up by (Bi2O2)2+ fluorite layers and (Am-1BmO3m+1)2- (m=2-4) pseudo-perovskite slabs. Bi2.5Na0.5Ta2O9 (m=2) and Bi2.5Na2.5Nb4O15 (m=4) crystallize in the orthorhombic space group A21am, Z=4, with lattice constants of a=5.4763(4), b=5.4478(4), c=24.9710 (15) and a=5.5095(5), b=5.4783(5), c=40.553(3) Å, respectively. Bi2.5Na1.5Nb3O12 (m=3) has been refined in the orthorhombic space group B2cb, Z=4, with the unit-cell parameters a=5.5024(7), b=5.4622(7), and c=32.735(4) Å. In comparison with its isostructural Nb analogue, the structure of Bi2.5Na0.5Ta2O9 is less distorted and bond valence sum calculations indicate that the Ta-O bonds are somewhat stronger than the Nb-O bonds. The cell parameters a and b increase with increasing m for the compounds Bi2.5Nam-1.5NbmO3m+3 (m=2-4), causing a greater strain in the structure. Electron microscopy studies verify that the intergrowth of mixed perovskite layers, caused by stacking faults, also increases with increasing m.  相似文献   

11.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

12.
The new nickel selenite chloride, Ni5(SeO3)4Cl2, was obtained by high-temperature solid state reaction of NiCl2, Ni2O3 and SeO2 in a 1:2:4 molar ratio at 700 °C in an evacuated quartz tube. Its structure was established by single-crystal X-ray diffraction. Ni5(SeO3)4Cl2 crystallizes in the triclinic system, space group P-1 (No. 2) with cell parameters of a=8.076(2), b=9.288(2), c=9.376(2) Å, α=101.97(3), β=105.60(3), γ=91.83(3)° and Z=2. All nickel(II) ions in Ni5(SeO3)4Cl2 are octahedrally coordinated by selenite oxygens or/and chloride anions (([Ni(1)O5Cl], [Ni(2)O4Cl2], [Ni(3)O5Cl], [Ni(4)O6] and [Ni(5)O4Cl]). The structure of the title compound features a condensed three-dimensional (3D) network built by Ni(II) ions interconnected by SeO32− anions as well as Cl anions. Magnetic property measurements show strong antiferromagnetic interaction between nickel(II) ions.  相似文献   

13.
The crystal structure of the new Bi∼3Cd∼3.72Co∼1.28O5(PO4)3 has been refined from single crystal XRD data, R1=5.37%, space group Abmm, a=11.5322(28) Å, b=5.4760(13) Å, c=23.2446(56) Å, Z=4. Compared to Bi∼1.2M∼1.2O1.5(PO4) and Bi∼6.2Cu∼6.2O8(PO4)5, this compound is an additional example of disordered Bi3+/M2+ oxyphosphate and is well described from the arrangement of double [Bi4Cd4O6]8+ (=D) and triple [Bi2Cd3.44Co0.56O4]6+ (=T) polycationic ribbons formed of edge-sharing O(Bi,M)4 tetrahedra surrounded by PO4 groups. According to the nomenclature defined in this work, the sequence is TT/DtDt, where t stands for the tunnels created by PO4 between two subsequent double ribbons and occupied by Co2+. The HREM study allows a clear visualization of the announced sequence by comparison with the refined crystal structure. The Bi3+/M2+ statistic disorder at the edges of T and D entities is responsible for the PO4 multi-configuration disorder around a central P atom. Infrared spectroscopy and neutron diffraction of similar compounds (without the highly absorbing Cadmium) even suggests the long range ordering loss for phosphates. Therefore, electron diffraction shows the existence of a modulation vector q*=1/2a*+(1/3+ε)b* which pictures cationic ordering in the (001) plane, at the crystallite scale. This ordering is largely lost at the single crystal scale. The existence of mixed Bi3+/M2+ positions also enables a partial filling of the tunnels by Co2+ and yields a composition range checked by solid state reaction. The title compound can be prepared as a single phase and also the M=Zn2+ term can be obtained in a biphasic mixture. For M=Cu2+, a monoclinic distortion has been evidenced from XRD and HREM patterns but surprisingly, the orthorhombic ideal form can also be obtained in similar conditions.  相似文献   

14.
Two novel noncentrosymmetric borates oxides, MBi2B2O7 or MBi2O(BO3)2 (MCa, Sr), have been synthesized by solid-state reactions in air at temperatures in the 600-700 °C range. Their crystal structures have been determined ab initio and refined using powder neutron diffraction data. CaBi2B2O7 crystallizes in the orthorhombic Pna21 space group with a=8.9371(5) Å, b=5.4771(3) Å, c=12.5912(7) Å, Z=4, Rwp=0.118, χ2=2.30. SrBi2B2O7 crystallizes in the hexagonal P63 space group with a=9.1404(4) Å, c=13.0808(6) Å, Z=6, Rwp=0.115, χ2=4.15. Large displacement parameters suggest the presence of disorder in SrBi2B2O7 as also revealed by diffuse 2×a superstructure reflections in electron diffraction patterns. Both structures are built of identical (001) neutral layers of corner-sharing BO3 triangles and MO6 trigonal prisms forming six-membered rings in which Bi2O groups are located. Adjacent layers are stacked in a staggered configuration and connected through weak Bi-O bonds. A moderate efficiency for second harmonic generation (SHG) has been measured for a powder sample of CaBi2B2O7 (deff=2deff(KDP)).  相似文献   

15.
Although R2O3:MoO3=1:6 (R=rare earth) compounds are known in the R2O3-MoO3 phase diagrams since a long time, no structural characterization has been achieved because a conventional solid-state reaction yields powder samples. We obtained single crystals of R2Mo6O21·H2O (R=Pr, Nd, Sm, and Eu) by thermal decomposition of [R2(H2O)12Mo8O27nH2O at around 685-715 °C for 2 h, and determined their crystal structures. The simulated XRD patterns of R2Mo6O21·H2O were consistent with those of previously reported R2O3:MoO3=1:6 compounds. All R2Mo6O21·H2O compounds crystallize isostructurally in tetragonal, P4/ncc (No. 130), a=8.9962(5), 8.9689(6), 8.9207(4), and 8.875(2) Å; c=26.521(2), 26.519(2), 26.304(2), and 26.15(1) Å; Z=4; R1=0.026, 0.024, 0.024, and 0.021, for R=Pr, Nd, Sm, and Eu, respectively. The crystal structure of R2Mo6O21·H2O consists of two [Mo2O7]2−-containing layers (A and B layers) and two interstitial R(1)3+ and R(2)3+ cations. Each [Mo2O7]2− group is composed of two corner-sharing [MoO4] tetrahedra. The [Mo2O7]2− in the B layer exhibits a disorder to form a pseudo-[Mo4O9] group, in which four Mo and four O sites are half occupied. R(1)3+ achieves 8-fold coordination by O2− to form a [R(1)O8] square antiprism, while R(2)3+ achieves 9-fold coordination by O2− and H2O to form a [R(2)(H2O)O8] monocapped square antiprism. The disorder of the [Mo2O7]2− group in the B layer induces a large displacement of the O atoms in another [Mo2O7]2− group (in the A layer) and in the [R(1)O8] and [R(2)(H2O)O8] polyhedra. A remarkable broadening of the photoluminescence spectrum of Eu2Mo6O21·H2O supported the large displacement of O ligands coordinating Eu(1) and Eu(2).  相似文献   

16.
Preparation and crystal structure of the novel compound [Bi3I(C4H8O3H2)2(C4H8O3H)5]2Bi8I30 are reported. The title compound is prepared by heating of BiI3 and diethylene glycol at 413 K in a sealed quartz glass tube filled with argon. Deep red single crystals are grown and applied to perform X-ray powder diffraction and X-ray single-crystal diffraction measurements. The compound crystallizes triclinic with space group P-1: Z=2, a=13.217(1) Å, b=15.277(1) Å, c=22.498(1) Å, α=84.33(1), β=73.18(1), γ=67.48(1). [Bi3I(C4H8O3H2)2(C4H8O3H)5]2Bi8I30 comprises the novel polynuclear [Bi8I30]6− anion and [Bi3I(C4H8O3H2)2(C4H8O3H)5]3+ as the cation. Cation as well as the anion can be assumed to represent intermediates between solid BiI3 and BiI3 completely dissolved in diethylene glycol.  相似文献   

17.
The crystal structures of compounds with nominal compositions Bi6FeP2O15+x (I), Bi6NiP2O15+x (II) and Bi6ZnP2O15+x (III) were determined from single-crystal X-ray diffraction data. They are monoclinic, space group I2, Z=2. The lattice parameters for (I) are a=11.2644(7), b=5.4380(3), c=11.1440(5) Å, β=96.154(4)°; for (II) a=11.259(7), b=5.461(4), c=11.109(7) Å, β=96.65(1)°; for (III) a=19.7271(5), b=5.4376(2), c=16.9730(6) Å, β=131.932(1)°. Least squares refinements on F2 converged for (I) to R1=0.0554, wR2=0.1408; for (II) R1=0.0647, wR2=0.1697; for (III) R1=0.0385, wR2=0.1023. The crystals are complexly twinned by 2-fold rotation about , by inversion and by mirror reflection. The structures consist of edge-sharing articulations of OBi4 tetrahedra forming layers in the a-c plane that then continue by edge-sharing parallel to the b-axis. The three-dimensional networks are bridged by Fe and Ni octahedra in (I) and (II) and by Zn trigonal bipyramids in (III) as well as by oxygen atoms of the PO4 moieties. Bi also randomly occupies the octahedral sites. Oxygen vacancies exist in the structures of the three compounds due to required charge balances and they occur in the octahedral coordination polyhedron of the transition metal. In compound (III), no positional disorder in atomic sites is present. The Bi-O coordination polyhedra are trigonal prisms with one, two or three faces capped. Magnetic susceptibility data for compound (I) were obtained between 4.2 and 350 K. Between 4.2 and 250 K it is paramagnetic, μeff=6.1 μB; a magnetic transition occurs above 250 K.  相似文献   

18.
The crystal structure of Ca12Al14O32Cl2 was determined from laboratory X-ray powder diffraction data (CuKα1) using the Rietveld method, with the anisotropic displacement parameters being assigned for all atoms. The crystal structure is cubic (space group , Z=2) with lattice dimensions a=1.200950(5) nm and V=1.73211(1) nm3. The reliability indices calculated from the Rietveld method were Rwp=8.48% (S=1.21), Rp=6.05%, RB=1.27% and RF=1.01%. The validity of the structural model was verified by the three-dimensional electron density distribution, the structural bias of which was reduced as much as possible using the maximum-entropy methods-based pattern fitting (MPF). The reliability indices calculated from the MPF were RB=0.75% and RF=0.56%. In the structural model there are one Ca site, two Al sites, two O sites and one Cl site. This compound is isomorphous with Ca12Al10.6Si3.4O32Cl5.4. Europium-doped sample Ca12Al14O32Cl2:Eu2+ was prepared and the photoluminescence properties were presented. The excitation spectrum consisted of two wide bands, which were located at about 268 and 324 nm. The emission spectrum, when excited at 324 nm, resulted in indigo light with a peak at about 442 nm.  相似文献   

19.
Single crystals of the title compounds were prepared using a BaCl2 flux and investigated by X-ray diffraction methods using MoKα radiation and a charge coupled device (CCD) detector. The crystal structures of these two new compounds were solved and refined in the hexagonal symmetry with space group P63/mmc, a=5.851(1) Å, c=25.009(5) Å, ρcal=4.94 g cm−3, Z=2 to a final R1=0.069 for 20 parameters with 312 reflections for Ba5Ru2Cl2O9 and space group , a=5.815(1) Å, c=14.915(3) Å, ρcal=5.28 g cm−3, Z=1 to a final R1=0.039 for 24 parameters with 300 reflections for Ba6Ru3Cl2O12. The structure of Ba5Ru2Cl2O9 is formed by the periodic stacking along [001] of three hexagonal close-packed BaO3 layers separated by a double layer of composition Ba2Cl2. The BaO3 stacking creates binuclear face-sharing octahedra units Ru2O9 containing Ru(V). The structure of Ba6Ru3Cl2O12 is built up by the periodic stacking along [001] of four hexagonal close-packed BaO3 layers separated by a double layer of composition Ba2Cl2. The ruthenium ions with a mean oxidation degree +4.67 occupy the octahedral interstices formed by the four layers hexagonal perovskite slab and then constitute isolated trinuclear Ru3O12 units. These two new oxychlorides belong to the family of compounds formulated as [Ba2Cl2][Ban+1RunO3n+3], where n represents the thickness of the octahedral string in hexagonal perovskite slabs.  相似文献   

20.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号