首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The structure of an Al3+ stabilized phase Li3−3xAlxBO3 (x≈0.18) was determined by means of single crystal X-ray diffraction. This phase crystallizes in space group P6122 or P6522, with lattice constants , and Z=6. The unit cell consists of six layers of BO3 groups with Li+ cations distributing statistically on five crystallographic sites, none of which is fully occupied. The Li sites are close to each other and a three-dimensional network results when Li sites only within 1.65 Å are connected. Significant ionic conductivity was observed for this phase.  相似文献   

2.
The two families of intermetallic phases REAuAl4Ge2 (1) (RE=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm and Yb) and REAuAl4(AuxGe1−x)2 (2) (x=0.4) (RE=Ce and Eu) were obtained by the reactive combination of RE, Au and Ge in liquid aluminum. The structure of (1) adopts the space group R-3m (CeAuAl4Ge2, , ; NdAuAl4Ge2, , ; GdAuAl4Ge2, , ; ErAuAl4Ge2, , ). The structure of (2) adopts the tetragonal space group P4/mmm with lattice parameters: , for EuAuAl4(AuxGe1−x)2 (x=0.4). Both structure types present slabs of “AuAl4Ge2” or “AuAl4(AuxGe1−x)2” stacking along the c-axis with layers of RE atoms in between. Magnetic susceptibility measurements indicate that the RE atoms (except for Ce and Eu) possess magnetic moments consistent with +3 species. The Ce atoms in CeAuAl4Ge2 and CeAuAl4(AuxGe1−x)2 (x=0.4) appear to be in a mixed +3/+4 valence state; DyAuAl4Ge2 undergoes an antiferromagnetic transition at 11 K and below this temperature exhibits metamagnetic behavior. The Eu atoms in EuAuAl4(AuxGe1−x)2 (x=0.4) appear to be in a 2+ oxidation state.  相似文献   

3.
A new ternary phase, Mn4Ir7−xMnxGe6 (0?x?1.3), was studied by X-ray and neutron powder diffraction and SQUID magnetometry. The crystal structure is cubic, of the U4Re7Si6 type, space group , Z=2, with the lattice parameter at 295 K. Within the limited range of homogeneity small variations of the composition yield dramatic changes of the magnetic structure. For x=0 long-range antiferromagnetic order is formed below the transition temperature 228 K, with large magnetic moments on Mn, 4.11(9) μB at 10 K, in a magnetic unit cell , cM=2aC. In contrast, for x=1.3 spin glass behavior is observed below 90 K. The Mn atoms form an ideal cubic framework, on which geometric frustration of competing nearest and next nearest neighbor antiferromagnetic interactions is suggested to explain the composition sensitive magnetic properties. A TiNiSi-type phase, IrMnGe, is found in samples of 1:1:1 composition quenched from the melt.  相似文献   

4.
Single crystals of Sb2−xFexTe3 (cFe=0-9.5×1019 cm−3) were prepared by Bridgman method. The interpretation of the reflection spectra in plasma resonance region indicates that Fe increases the concentration of holes (acceptor) and each Fe atom incorporated in Sb2Te3 structure liberates 0.4-0.5 hole. Observed effect is elucidated by means of point defect model. According to the model Fe atoms enter the structure and form uncharged substitutional defects . Since this defect cannot affect the free-carrier concentration directly, we assume an interaction of the entering Fe-atoms with natives defects leading to a rise in the concentration of antisite defects , to a decrease of concentration, and to an increase in the concentration of holes.  相似文献   

5.
New ternary antimonide Dy3Cu20+xSb11−x (x≈2) was synthesized and its crystal structure was determined by direct methods from X-ray powder diffraction data (diffractometer DRON-3M, CuKα-radiation, RI=6.99%,Rp=12.27%,Rwp=11.55%). The compound crystallizes with the own cubic structure type: space group , Pearson code cF272, . The structure of the Dy3Cu20Sb11−x (x≈2) can be obtained from the structure type BaHg11 by doubling of the lattice parameter and subtraction of 16 atoms. The studied structure was compared with the structures of known compounds, which crystallize in the same space group with similar cell parameters.  相似文献   

6.
The crystal structures of the compounds La2−xYxZr2O7 and La2−xYxHf2O7 with x=0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 have been studied using neutron powder diffraction and electron microscopy to determine the stability fields of the pyrochlore and fluorite solid solutions. The limits of pyrochlore stability in these solid solutions are found to be close to La0.8Y1.2Zr2O7 and La0.4Y1.6Hf2O7, respectively. In both systems the unit cell parameter is found to vary linearly with Y content across those compositions where the pyrochlore phase is stable, as does the x-coordinate of the oxygen atoms on the 48f (x,,) sites. In both systems, linear extrapolations of the pyrochlore data suggest that the disordering is accompanied by a small decrease in the lattice parameter of approximately 0.4%. After the pyrochlore solid solution limit is reached, a sharp change is observed from x∼0.41 to 0.375 as the disordered defect fluorite structure is favoured. Electron diffraction patterns illustrate that some short-range order remains in the disordered defect fluorite phases.  相似文献   

7.
8.
The wide-range of non-stoichiometric NiAs-type solid solution NiyGe1−xPx has been studied by means of X-ray powder and electron diffraction. The incommensurately modulated structure of Ni(Ge, P) has been found to exist over a wide compositional range which is limited by the end points ≈NiGe0.8P0.2 and NiGe0.3P0.7 so that the general stoichiometry might be referred to as NiGe1−xPx with 0.2?x?0.7. The modulation wave vector is of the type and its modulus is strongly composition dependent. A possible interpretation is given as a “soft transition”, via an incommensurately modulated structure, between the MnP and the NiP structure types, based on the almost purely displacive origin of the distortion. Further, the crystal structures of Ni5Ge2P3 and Ni2GeP seem to be commensurate approximations of the incommensurate modulated structure of Ni(Ge, P).  相似文献   

9.
A series of 25 members of the 1:3 ordered perovskite family of the type Ba4−xSrxNaSb3O12 has been synthesized and their structures determined using synchrotron X-ray and neutron powder diffraction techniques. At room temperature the sample Ba4NaSb3O12 has a cubic structure in space group with a=8.2821(1) Å, where the Na and Sb cations are ordered in the octahedral sites but there is no tilting of the (Na/Sb)O6 octahedra. As the average size of the A-site cation decreases, through the progressive replacement of Ba by Sr, tilting of the octahedra is introduced firstly lowering the symmetry to tetragonal in P4/mnc then to orthorhombic in Cmca and ultimately a monoclinic structure in P21/n as seen for Sr4NaSb3O12 with a=8.0960(2) Å, b=8.0926(2) Å, c=8.1003(1) Å and β=90.016(2)°. The powder neutron diffraction studies show that the orthorhombic and tetragonal phases in Cmca and P4/mnc co-exist at room temperature for samples with x between 1.5 and 2.  相似文献   

10.
Single crystals of the title compounds were prepared by solid state reactions from barium carbonate and ruthenium metal using a BaBr2 flux and investigated by X-ray diffraction method using Mo(Kα) radiation and a Charge Coupled Device (CCD) detector. A structural model for the term n=2, Ba5Ru2Br2O9 (1) was established in the hexagonal symmetry, space group P63/mmc, a=5.8344(2) Å, c=25.637(2) Å, Z=2. Combined refinement and maximum-entropy method (MEM) unambiguously show the presence of CO32− ions in the three other compounds (2, 3, 4). Their crystal structures were solved and refined in the trigonal symmetry, space group , a=5.8381(1) Å, c=15.3083(6) Å for the term n=3, Ba6Ru3Br1.54(CO3)0.23O12 (2), and space group , a=5.7992(1) Å, c=52.866(2) Å and a=5.7900(1) Å, c=59.819(2) Å for the terms n=4, Ba7Ru4Br1.46(CO3)0.27O15 (3), and n=5, Ba8Ru5Br1.64(CO3)0.18O18 (4), respectively. The structures are formed by the periodic stacking along [0 0 1] of (n+1) hexagonal close-packed [BaO3] layers separated by a double layer of composition [Ba2Br2−2x(CO3)x]. The ruthenium atoms occupy the n octahedral interstices created in the hexagonal perovskite slabs and constitute isolated dimers Ru2O9 of face-shared octahedra (FSO) in 1 and isolated trimers Ru3O12 of FSO in 2. In 3 and 4, the Ru2O9 units are connected by corners either directly (3) or through a slab of isolated RuO6 octahedra (4) to form a bidimensional arrangement of RuO6 octahedra. These four oxybromocarbonates belong to the family of compounds formulated [Ba2Br2−2x(CO3)x][Ban+1RunO3n+3] where n represents the thickness of the octahedral string in hexagonal perovskite slabs. These compounds are compared to the oxychloride series.  相似文献   

11.
The ternary stannides LixRh3Sn7−x (x=0.45, 0.64, 0.80) and LixIr3Sn7−x (x=0.62 and 0.66) were synthesized from the elements in sealed tantalum tubes in a water-cooled sample chamber of an induction furnace. The samples were characterized by X-ray diffraction on powders and single crystals. The stannides adopt the cubic Ir3Ge7-type structure (space group , Z=4). In this structure type the tin atoms occupy the Wyckoff positions 12d and 16f and form two interpenetrating frameworks consisting of cubes and square antiprisms. The rhodium and iridium atoms center the square antiprisms and are arranged in pairs. With increasing lithium substitution the lattice parameter of Ir3Sn7 (936.7) decreases via 932.2 pm (x=0.62) to 931.2 pm (x=0.66), while the Ir-Ir distance remains almost the same (290 pm). A similar trend is observed for the rhodium compounds. The lithium atoms substitute Sn on both framework sites. However, the 16f site shows a substantially larger preference for Li occupation. This is in contrast to the isotypic magnesium based compounds.  相似文献   

12.
Two new (NaSrP, Li4SrP2) and two known (LiSrP, LiBaP) ternary phosphides have been synthesized and characterized using single crystal X-ray diffraction studies. NaSrP crystallizes in the non-centrosymmetric hexagonal space group (#189, a=7.6357(3) Å, c=4.4698(3) Å, V=225.69(2) Å3, Z=3, and R/wR=0.0173/0.0268). NaSrP adopts an ordered Fe2P structure type. PSr6 trigonal prisms share trigonal (pinacoid) faces to form 1D chains. Those chains define large channels along the [001] direction through edge-sharing. The channels are filled by chains of PNa6 face-sharing trigonal prisms. Li4SrP2 crystallizes in the rhombohedral space group (#166, a=4.2813(2) Å, c=23.437(2) Å, V=372.04(4) Å3, Z=3, and R/wR=0.0142/0.0222). In contrast to previous reports, LiSrP and LiBaP crystallize in the centrosymmetric hexagonal space group P63/mmc (#194, a=4.3674(3) Å, c=7.9802(11) Å, V=131.82(2) Å3, Z=2, and R/wR=0.0099/0.0217 for LiSrP; a=4.5003(2) Å, c=8.6049(7) Å, V=150.92(2) Å3, Z=2, and R/wR=0.0098/0.0210 for LiBaP). Li4SrP2, LiSrP, and LiBaP can be described as Li3P derivatives. Li atoms and P atoms make a graphite-like hexagonal layer, . In LiSrP and LiBaP, Sr or Ba atoms reside between layers to substitute for two Li atoms of Li3P, while in Li4SrP2, Sr substitutes only between every other layer.  相似文献   

13.
The structures of eight members of the series Sr1−xCexMnO3 with 0.075?x?0.4 have been established using synchrotron X-ray powder diffraction. These exhibit the sequence of structures
  相似文献   

14.
A polycrystalline sample of Pr18Li8Fe4RuO39 has been synthesized by a solid state method and characterized by neutron powder diffraction, magnetometry and Mössbauer spectroscopy; samples of Pr18Li8Fe5−xMnxO39 and Pr18Li8Fe5−xCoxO39 (x=1, 2) have been studied by magnetometry. All these compounds adopt a cubic structure (space group , a0∼11.97 Å) based on intersecting 〈111〉 chains made up of alternating octahedral and trigonal-prismatic coordination sites. These chains occupy channels within a Pr-O framework. The trigonal-prismatic site in Pr18Li8Fe4RuO39 is occupied by Li+ and high-spin Fe3+. The remaining transition-metal cations occupy the two crystallographically-distinct octahedral sites in a disordered manner. All five compositions adopt a spin-glass-like state at 7 K (Pr18Li8Fe4RuO39) or below.  相似文献   

15.
The new compound K2CuSbS3 has been synthesized by the reaction of K2S, Cu, Sb, and S at 823 K. The compound crystallizes in the Na2CuSbS3 structure type with four formula units in space group P21/c of the monoclinic system in a cell at 153 K of a=6.2712 (6) Å, b=17.947 (2) Å, c=7.4901 (8) Å, β=120.573 (1)°, and V=725.81 (12) Å3. The structure contains two-dimensional layers separated by K atoms. Each layer is built from CuS3 and SbS3 units. Each Cu atom is pyramidally coordinated to three S atoms with the Cu atom about 0.4 Å above the plane of the S atoms. Each Sb atom is similarly coordinated to three S atoms but is about 1.1 Å above its S3 plane. First-principles calculations indicate an indirect band gap of 1.9 eV. These calculations also indicate that there is a bonding interaction between the Cu and Sb atoms. An optical absorption measurement performed with light perpendicular to the (0 1 0) crystal face of a red block-shaped crystal of K2CuSbS3 indicates an experimental indirect band gap of 2.2 eV.  相似文献   

16.
Synchrotron X-ray and neutron powder diffraction were used to investigate the formation, structure and bonding in the double perovskite Ba2−xSrxTbIrO6 solid solutions. The results showed that these oxides all exhibit ordering of the Tb and Ir cations in a double perovskite-type structure. Three distinct structural types differing in symmetry and/or valence states were formed depending on the precise Ba:Sr ratio on the perovskite A site; x?0.3 cubic () with Tb4+ and Ir4+; 0.4?x?1.0 cubic () with Tb3+ and Ir5+ and x?1.2 monoclinic (P21/n) with Tb3+ and Ir5+. The transitions between these appear to be first order in nature.  相似文献   

17.
The crystal structures of the perovskite manganites SrxCa1−xyNdyMnO3 with y=0.1 or 0.2 have been investigated using synchrotron X-ray powder diffraction. At room temperature the structures change from depending on the cation distribution, the different structures exhibiting different tilts of the MnO6 octahedra. High temperature diffraction measurements demonstrate the presence of, an apparently continuous, isosymmetric I4/mcm to I4/mcm phase transition associated with the removal of long range orbital ordering. Heating the manganites to still higher temperatures results in a continuous transition to the cubic structure. A feature of such transitions is the continuous evolution of the octahedral tilt angle through the I4/mcm to I4/mcm phase transition. The orthorhombic structures do not exhibit orbital ordering and although a first order transition to the tetragonal structure is observed in Sr0.4Ca0.5Nd0.1MnO3, this high temperature tetragonal structure does not exhibit orbital ordering.  相似文献   

18.
A novel non-centrosymmetric borate, BiCd3(AlO)3(BO3)4, has been prepared by solid state reaction methods below 750 °C. Single-crystal XRD analysis showed that it crystallizes in the hexagonal group P63 with a=10.3919(15) Å, c=5.7215(11) Å, Z=2. In its structure, AlO6 octahedra share edges to form 1D chains that are bridged by BO3 groups through sharing O atoms to form the 3D framework. The 3D framework affords two kinds of channels that are occupied by Bi3+/Cd2+ atoms only or by Bi3+/Cd2+ atoms together with BO3 groups. The IR spectrum further confirmed the presence of BO3 groups. Second-harmonic-generation measurements displayed a response of about 0.5×KDP (KH2PO4). UV-vis diffuse reflectance spectrum showed a band gap of about 3.19 eV. Solid-state fluorescence spectrum exhibited the maximum emission peak at around 390.6 nm. Band structure calculations indicated that it is an indirect semiconductor.  相似文献   

19.
The synthesis and crystal structures of nine members of the rock-salt ordered double perovskites Sr2−xCaxCrNbO6 is presented. The crystal structures of the end members of the series Sr2CrNbO6 and Ca2CrNbO6 were refined using powder neutron diffraction data and are cubic in and monoclinic in P21/n, respectively, in both cases there being considerable anti-site Cr-Nb mixing. Variable temperature and/or composition studies suggest a direct first-order P21/n to transition, a suggestion supported by selected area electron diffraction studies.  相似文献   

20.
The perovskite-type oxides Ba1−xLax(1−y)/2Euxy/2Nax/2TiO3 (0?x?0.5 and xy=0.04) were synthesized and characterized by X-ray diffraction as well as dielectric measurements and Raman spectroscopy. The crystal structure of these ceramics has been determined by the Rietveld refinement powder X-ray diffraction data at room temperature. These compounds crystallize at room temperature in tetragonal space group P4mm for 0?x?0.1 and in the cubic group for 0.2?x?0.5. The phase transition temperature TC (or Tm) decreases as x content increases. The degree of diffuseness of the phase transition is more pronounced for higher x content, implying the existence of a composition-induced diffuse phase transition of the ceramics with x?0.1. The evolution of the Raman spectra was studied as a function of various compositions at room temperature. The polarization state was checked by pyroelectric measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号