首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and polystyrene (PS) colloids and the reducing agent in the formation of Ag nanoparticles. Due to the multi-functional characteristic of PEI, Ag seeds formed in-situ and were immobilized on the surface of PEI-modified PS colloids and no free Ag clusters coexist with the Ag “seeding” PS colloids in the system. Then, the additional agents could be added into the resulting dispersions straightly to produce a thick Ag nanoshell. The Ag nanoshell with controllable thickness was formed on the surface of PS by the “one-pot” surface seeding and shell growth method. The Ag-coverage increased gradually with the increasing of mass ratio of AgNO3/PS. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag.  相似文献   

2.
SiO2/Ag核壳结构纳米粒子的制备及表征   总被引:3,自引:0,他引:3  
胡永红  容建华  刘应亮  满石清 《化学学报》2005,63(24):2189-2193
以金纳米粒子为表面晶种, 通过化学还原的方法制备了二氧化硅/银核壳复合纳米粒子. 采用TEM, XRD及UV/vis对其结构、形貌以及光学性质进行了表征和研究, 结果表明所得到的复合粒子粒径均匀、银纳米壳光滑完整, 厚度可控. 并且随着银纳米壳厚度的增大, 其光学等离子体共振峰逐渐蓝移. 而当银纳米粒子在二氧化硅胶粒表面上生长的过程中, 它们的共振峰又逐渐红移, 直到完整的银壳形成.  相似文献   

3.
The optical properties of metals arise both from optical excitation of interband transitions and their collective electronic, or plasmon, response. Here, we examine the optical properties of Cu, whose strong interband transitions dominate its optical response in the visible region of the spectrum, in a nanoshell geometry. This nanostructure permits the geometrical tuning of the nanoparticle plasmon energy relative to the onset of interband transitions in the metal. Spectral overlap of the interband transitions of Cu with the nanoshell plasmon resonance results in a striking double-peaked plasmon resonance, a unique phenomenon previously unobserved in other noble or coinage metal nanostructures.  相似文献   

4.
The water-soluble Ag/Pt core-shell nanoparticles were prepared by deposition Pt over Ag colloidal seeds with the seed-growth method using K2PtCl4 with trisodium citrate as reduced agent. The Ag:Pt ratio is varied from 9:1 to 1:3 for synthesizing Pt shell layer of different thickness. A remarkable shift and broadening of Ag surface plasmon band around 410 nm was observed. The contrast of TEM images of Ag/Pt colloids has been obtained. Various techniques, such as transmission electron microscopy (TEM), UV-vis absorption and resonance light-scattering spectroscopy were used to characterize nanoparticles. The data of TEM, UV-vis and resonance light-scattering spectrum all confirm formation of Ag/Pt core-shell nanoparticles. Resonance light-scattering and emission spectrum show the Ag and Ag/Pt core-shell nanoparticles have a nonlinear light-scattering characteristic.  相似文献   

5.
Silver nanoparticles of different sizes were prepared by citrate reduction and characterized by UV-vis absorbance spectra, TEM images and photoluminescence spectra. The morphology of the colloids obtained consists of a mixture of nanorods and spheres. The surface plasmon resonance (SPR) and photoemission properties of Ag nanoparticles are found to be sensitive to citrate concentration. A blue shift in SPR and an enhancement in photoluminescence intensity are observed with increase in citrate concentration. Effect of addition of KCl and variation of pH in photoluminescence was also studied.  相似文献   

6.
在聚乙烯吡啶修饰导电玻璃电极表面进行了金纳米粒子的二维单层结构组装,通过电沉积方法在金粒子表面制备了纳米汞壳层.研究结果表明,汞壳层的形成导致了内部金粒子表面等离子体共振的谱峰红移和强度衰减.吸附于汞壳表面的结晶紫分子因可承受被金核增强的电磁场,而使其拉曼散射得到极大的增强.  相似文献   

7.
In a program on the development of metal nanoclusters in sol-gel derived thin films, attempts were made to synthesize pure and mixed metal clusters, control the cluster size and increase the volume fract f the clusters. Thus, Ag, Cu and Ag-Cu nanoclusters were prepared in silica films using dip- and spin-coating techniques. The annealing of Ag/SiO2 films in different atmospheres (air, argon and 5% H2-95% N2 gas) caused modifications of Ag nanoclusters resulting in changes in their surface plasmon resonance (SPR) peak positions. The Cu and Ag-Cu codoped films were annealed in reducing atmosphere (5% H2-95% N2 gas). In order to prepare Cu nanoclusters of different sizes, the concentrations of Cu in Cu/SiO2 composite films were varied from 8 to 30 mol% and annealed at 800°C for different times for growth. The size of the Cu nanoclusters was measured from the half band width of Cu SPR peak (appearing within 570–557 nm range) and X-ray diffraction. In this way Cu-nanoclusters of size ranges from about 3.5 to 10 nm (average diameters) were prepared . The Ag-Cu nanocluster-containing silica films show the existence of both Ag and Cu SPR peaks with some blue shifting in comparison with to their pure analogues depending on the Ag:Cu ratio.  相似文献   

8.
用3种方法制备了银纳米粒子-聚乙烯醇复合体系,其中用加热还原法所得体系中Ag纳米粒子的尺寸较大(15nm),其表面等离子体共振吸收峰较宽,最大吸收波长位于420nm;用室温硼氢化钠还原法得到的复合体系的吸收峰蓝移至409nm,且峰形较窄,Ag纳米粒子的平均粒径为8.7nm;低温NaBH4还原法所得体系吸收峰进一步蓝移至397nm,此时Ag纳米粒子粒径最小(3.5nm).将室温还原法所得Ag-PVA复合体系旋涂成膜,所得薄膜光滑、透明、均匀性好,该法适用于制备多层薄膜,以调控薄膜的厚度和光谱性质.将Ag-PVA复合体系与钛酸四丁酯(Ti(OnBu)4)的乙醇溶液交替旋涂得到Ag-PVA/TiO2有机/无机复合薄膜.紫外-可见吸收光谱研究表明,随着Ag-PVA层数的增加,薄膜的表面等离子体共振吸收强度呈线性增加,但是TiO2层数的增加对吸收光谱没有明显影响.Ag-PVA/TiO2有机/无机复合薄膜将金属纳米粒子、有机高分子与无机半导体材料结合在一起,这种多层纳米结构在光电、催化功能薄膜等方面具有潜在的应用前景.  相似文献   

9.
Core-shell Ag-Au nanoparticles from replacement reaction in organic medium   总被引:3,自引:0,他引:3  
The replacement reaction between hydrophobized Ag nanoparticles and hydrophobized AuCl4- in toluene has been examined in detail. The conclusions obtained under our experimental conditions are different from those reported in the literature in three aspects: (1) a detectable contraction of the Ag nanoparticle sacrificial templates during the course of the reaction is shown; (2) the deposition of Au on the shrunken Ag templates inhibits further Ag oxidation, resulting in the formation of core-shell Ag-Au nanoparticles instead of Au nanoshells; and (3) the significant red-shift in the surface plasmon resonance (SPR) band is more of a consequence of shape and chemical composition changes rather than as an indication of Au nanoshell formation. Solvent and temperature are influential environmental factors that determine the structure and composition of nanoparticles formed by the replacement reaction.  相似文献   

10.
Plasmonic metal nanoparticles have great potential for chemical and biological sensor applications, due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. In this work, we investigated the dependence of the sensitivity of the surface plasmon resonance (frequency and bandwidth) response to changes in their surrounding environment and the relative contribution of optical scattering to the total extinction, on the size and shape of nanorods and the type of metal, that is, Au vs Ag. Theoretical consideration on the surface plasmon resonance condition revealed that the spectral sensitivity, defined as the relative shift in resonance wavelength with respect to the refractive index change of surrounding materials, has two controlling factors: first the bulk plasma wavelength, a property dependent on the metal type, and second on the aspect ratio of the nanorods which is a geometrical parameter. It is found that the sensitivity is linearly proportional to both these factors. To quantitatively examine the dependence of the spectral sensitivity on the nanorod metal composition and the aspect ratio, the discrete dipole approximation method was used for the calculation of optical spectra of Ag-Au alloy metal nanorods as a function of Ag concentration. It is observed that the sensitivity does not depend on the type of the metal but depends largely on the aspect ratio of nanorods. The direct dependence of the sensitivity on the aspect ratio becomes more prominent as the size of nanorods becomes larger. However, the use of larger nanoparticles may induce an excessive broadening of the resonance spectrum due to an increase in the contribution of multipolar excitations. This restricts the sensing resolution. The insensitivity of the plasmon response to the metal composition is attributable to the fact that the bulk plasma frequency of the metal, which determines the spectral dispersion of the real dielectric function of metals and the surface plasmon resonance condition, has a similar value for the noble metals. On the other hand, nanorods with higher Ag concentration show a great enhancement in magnitude and sharpness of the plasmon resonance band, which gives better sensing resolution despite similar plasmon response. Furthermore, Ag nanorods have an additional advantage as better scatterers compared with Au nanorods of the same size.  相似文献   

11.
A novel hydrothermal layer-by-layer processing method for the fabrication of core/alloy nanoparticles with highly tunable surface plasmon resonance is described. For a model system of Au/Au(x)Ag(1-x), the processing temperature, alloy composition, and alloy thickness resulted in unique and tailorable plasmonic signatures. The discrete dipole approximation and selective alloy etching were used to correlate this optical response with the particle morphology and alloy phase ultrastructure.  相似文献   

12.
We report the synthesis of Ag-Au alloy gradients on stainless steel substrates using bipolar electrodeposition (BP-ED), a technique based on the existence of a potential gradient at the interface of a bipolar electrode (BPE) and an electrolytic solution. The interfacial potential gradient causes the rates of electrodeposition of Ag and Au to vary along the length of the BPE, leading to the electrodeposition of a chemical concentration gradient. The surface morphology of the electrodeposits was characterized using scanning electron microscopy (SEM), and their chemical composition was determined using energy dispersive X-ray spectroscopy (EDX). Self-assembled monolayers of a Raman-active probe molecule (benzene thiol) were allowed to form on the surface of the alloy gradients, and confocal Raman microscopy was employed to determine the alloy composition that resulted in the maximum surface enhanced Raman scattering (SERS) intensity. An alloy composition of ca. 70% Ag/30% Au was found to be optimum for SERS excited using 514.5 nm radiation, and it is explained on the basis of composition-dependent changes in the local surface plasmon resonance (LSPR) of the electrodeposited Ag-Au alloy.  相似文献   

13.
Wu  Meng  Yan  Luting  Li  Jiali  Wang  Lei 《Research on Chemical Intermediates》2017,43(11):6407-6419

Ag/AgCl is a visible-light plasmonic photocatalyst that has attracted considerable attention because of its high visible-light absorption and activity owing to the surface plasmon resonance of noble-metal nanoparticles. In this study, Ag/AgCl/ZnO tetrapod composite was prepared by introducing ZnO tetrapods into Ag/AgCl prepared by a polydopamine reduction route. Ag/AgCl was densely deposited on the three-dimensional support framework provided by the ZnO tetrapods. The framework possessed a certain degree of porosity, thereby improving the specific surface area of the Ag/AgCl/ZnO composite. The interaction of ZnO with Ag/AgCl further increased the separation and transfer of electron–hole pairs. The Ag/AgCl/ZnO composite showed excellent photocatalytic activity and good stability. Under xenon lamp irradiation for 20 min, degradation of rhodamine B reached 90%. After four recycling tests, degradation remained stable without any sign of reduction. Ag/AgCl/ZnO tetrapod composite is shown to be a kind of green photocatalyst offering high activity, good stability, and recyclability.

  相似文献   

14.
Au-Ag合金纳米粒子制备及其表面增强拉曼光谱研究   总被引:1,自引:1,他引:1  
首先采用柠檬酸钠法制得Au-Ag合金纳米种子, 然后采用盐酸羟胺生长法得到不同组成的Au-Ag合金纳米粒子. 在其UV-Vis光谱中只观察到一个位于单金属银和金之间的等离子体共振峰, 表明Au-Ag合金纳米粒子已经形成. TEM结果表明, 合金纳米粒子的粒径约为60 nm, 且颜色均一, 没有明显的核壳结构. 用苯硫酚(TP)作为探针分子研究了合金纳米粒子的表面增强拉曼光谱(SERS). 结果表明, SERS强度与合金纳米粒子的组成和尺寸有关. 当纳米粒子粒径一定时, 除Au25Ag75外, 随着金的增加SERS强度增强. Au25Ag75的粒径比Ag小, 导致SERS强度比Ag低. Au50Ag50和Au75Ag25加入TP分子后, 其聚集方式与Au相似, 等离子体共振峰逐渐靠近1064 nm, 金含量较高时, TP的SERS归于聚集体的等离子体共振增强的贡献.  相似文献   

15.
A sol-gel route to synthesize nanocomposite thin films containing phase separated metal colloids of gold (Au) and silver (Ag) was developed. Ag—Au colloids were prepared in silica films using dip coating technique. The annealing of the samples in air results in the formation of phase separated Ag and Au colloids in SiO2 thin films, showing the surface plasmon peaks at 410 nm and 528 nm. For the synthesis of phase separated Ag and Au colloids on float glass substrates, formation of the silver colloids was found strongly dependent on the surface of the float glass. On the tin rich surface formation of both gold and silver colloids took place, whereas, on the tin poor surface the formation of only gold colloids was observed. The surface dependence of the formation of silver colloids was attributed to the presence of tin as Sn2+ state on the glass surface, which oxidizes into Sn4+ during heat treatment, reducing Ag+ into silver colloids.  相似文献   

16.
A one-pot route was illustrated to synthesize stable well-dispersed silver colloids stabilized by polyacrylamide on a large scale. Reduction of silver ions and polymerization of acrylamide occurred almost simultaneously in the absence of a commonly used reducing agent and initiator. A possible mechanism for the formation of silver nanoparticles with bimodal size distribution was proposed. The structure and composition of the obtained nanoparticles were characterized carefully. Furthermore, light scattering simulation and UV-vis absorption studies confirmed that the obtained colloids were the mixture of Ag and Ag2O nanoparticles. The presence of silver oxide layers on the nanoparticle surface should be responsible for the broadening of the surface plasmon band of silver nanoparticles. Ag2O layers could be added or removed from Ag nanoparticle surfaces by the addition of HNO3, HAc, or NaCl solution to the as-obtained silver colloids.  相似文献   

17.
帽状铜纳米粒子的制备及表面增强拉曼散射活性研究   总被引:2,自引:0,他引:2  
采用真空热蒸发法在SiO2纳米粒子自组装单层膜上沉积铜薄膜制备了帽状铜纳米粒子。用扫描电镜、原子力显微镜和紫外-可见-近红外分光光度计对帽状复合纳米粒子的表面形貌和光学性质进行了表征。以亚甲基蓝和吡啶-(2-偶氮-4)间苯二酚为探针分子,研究了该复合纳米粒子的表面增强拉曼散射(SERS)活性。通过比较吸附在不同基底上的吡啶-(2-偶氮-4)间苯二酚的谱峰强度,探讨了SERS效应与表面等离子体共振(SPR)的关系。  相似文献   

18.
Layered core-shell bimetallic silver-gold nanoparticles were prepared by coating Au layers over Ag seeds by a seed-growth method. The composition of Ag100-xAux particles can vary from x=0 to 30. TEM and SEM images clearly show that the bimetallic nanoparticles are of core-shell structure with some pinholes on the surface. Strong surface-enhanced Raman (SER) signals of thiophenol and p-aminothiophenol have been obtained with these colloids. It was found that the SERS activity of aggregated colloids critically depends on the molar ratio of Ag to Au. With the increase of the Au molar fraction, the SERS activity enhances first and then weakens, with the maximal intensity being 10 times stronger than that of Ag colloids. The AgcoreAushell nanoparticles were then labeled with monoclonal antibodies and SERS probes and used for immunoassay analysis. In the proposed system, antibodies immobilized on a solid substrate can interact with the corresponding antigens to form a composite substrate, which can capture reporter-labeled AgcoreAushell nanoparticles modified with the same antibodies. The immunoreaction between the antibodies and antigens was demonstrated by the detection of characteristic Raman bands of the probe molecules. AgcoreAushell bimetallic nanoparticles, as a new SERS active and biocompatible substrate, will be expected to improve the detection sensitivity of immunoassay.  相似文献   

19.
We describe a remarkable and simple alloying procedure in which noble metal intermetallic nanoparticles are produced in gram quantities via digestive ripening. This process involves mixing of separately prepared colloids of pure Au and pure Ag or Cu particles and then heating in the presence of an alkanethiol under reflux. The result after 1 h is alloy nanoparticles. Particles synthesized according to this procedure were characterized by UV-vis spectroscopy, EDX analysis, and high-resolution electron microscopy, the results of which confirm the formation of alloy particles. The particles of 5.6+/-0.5 nm diameter for Au/Ag and 4.8+/-1.0 nm diameter for Cu/Au undergo facile self-assembly to form 3-D superlattice ordering. It appears that during this digestive ripening process, the organic ligands display an extraordinary chemistry in which atom transfer between atomically pure copper, silver, and gold metal nanoparticles yields monodisperse alloy nanoparticles.  相似文献   

20.
We present the synthesis and analysis of silica-coated Au/Ag bimetallic nanorods with controlled surface plasmon bands. Depending on the thickness of Ag shell deposited on the Au nanorod surface, there is a blue-shift on the longitudinal surface plasmon band of Au nanorods, which can be expressed by an approximate formula derived from the absorption profile of light in Ag films using finite difference time domain simulations. The subsequent coating of silica shell not only enhances the stability of the Au/Ag bimetallic nanorods but also provides a mesoporous host for optically active species. Minute red-shifts of the longitudinal resonance mode, induced by stepwise increased silica shell volumes, are shown. Application as carrier for fluorescent rhodamine B molecules is demonstrated by photoluminescence analysis. On the single-particle level, dark field microscopy of Au/Ag-silica nanorods was finally employed. This introduces a route towards revealing the relation between structure, shape, and optical (plasmonic) properties of complex composite metal particles as well as fabrication strategies for nanoassemblies of tailored structures in the field of nanoplasmonics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号