首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Stimuli-responsive polymers are macromolecular materials that undergo changes in response to small external stimuli in the environmental conditions. Among stimuli-responsive hydrogels are several polyacrylamides. Frontal polymerization is a fast, easy and inexpensive polymerization technique used for the synthesis of macromolecules.Aim of this work was the evaluation of the Frontal polymerization technique as new method for the preparation of controlled release dosage forms in which drug loading and polymer preparation occur together, as well as the possibility of obtaining more dosage units by a unique preparation. Hydrogels based on polyacrylamide containing diclofenac sodium salt were prepared using the Frontal polymerization and compared with similar systems obtained by the classic batch method. Polymers characterized by three different degree of cross-linking were prepared. The stability of the drug during the sample preparation was evaluated by IR analysis. The obtained samples were characterized in terms of drug content, morphology, in vitro drug release and swelling properties. Samples were studied also divided into disks. The results show that hydrogels based on polyacrylamide can be prepared by Frontal polymerization; these samples show similar properties to those obtained by batch polymerization. The drug is stable in the polymerization reaction conditions. Samples characterized by the lowest degree of cross-linking show drug loading values always higher than samples with the highest one regardless of the preparation method employed. The swelling ratio decreases as the degree of cross-linking increases. Loaded samples swell more than drug free ones. From a single preparation of hydrogel, three disks showing same drug content and in vitro release behaviour can be obtained and thus they can be used as three single dosage units.  相似文献   

2.
Reverse thermal gels have numerous biomedical implications, as they undergo physical gelation upon temperature increases and can incorporate biomolecules to promote tissue repair. Such a material is developed for the sustained release of bevacizumab (Avastin), a drug used to treat age‐related macular degeneration. The polymer, poly(ethylene glycol)‐poly(serinol hexamethylene urethane) (ESHU), forms a physical gel when heated to 37 °C and shows good cytocompatibility with ocular cells. ESHU is capable of sustaining bevacizumab release over 17 weeks in vitro, and the release kinetics can be altered by changing the drug dose and the ESHU concentration. These results suggest that ESHU is biologically safe, and suitable for ocular drug delivery.

  相似文献   


3.
4.
An alkene–azide 1,3‐dipolar cycloaddition between trans‐cyclooctene (TCO) and an azide‐capped hydrogel that promotes rapid gel dissolution is reported. Using an ultrashort aryl azide‐capped peptide hydrogel (PhePhe), we have demonstrated proof‐of‐concept where upon reaction with TCO, the hydrogel undergoes a gel–sol transition via 1,2,3‐triazoline degradation and 1,6‐self‐immolation of the generated aniline. The potential application of this as a general trigger in sustained drug delivery is demonstrated through release of encapsulated cargo (doxorubicin). Administration of TCO resulted in 87 % of the cargo being released in 10 h, compared to 13–14 % in the control gels. This is the first example of a potential bioorthogonal‐triggered hydrogel dissolution using a traditional click‐type reaction. This type of stimulus could be extended to other aryl azide‐capped hydrogels.  相似文献   

5.
Hydrogel‐based drug delivery systems can leverage therapeutically favorable upshots of drug release and found clinical uses. Hydrogels offer temporal and spatial control over the release of different therapeutic agents. Because of their tailor made controllable degradability, physical properties, and ability to prevent the labile drugs from degradation, hydrogels provide platform on which diverse physicochemical interactions with entrapped drugs cause to control drug release. Herein, we report the fabrication of novel vinyltrimethoxy silane (VTMS) cross‐linked chitosan/polyvinyl pyrrolidone hydrogels. Swelling in distilled water in conjunction with different buffer and electrolyte solutions was performed to assess the swellability of hydrogels. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X‐ray diffraction (XRD) analysis were further conducted to investigate the possible interactions between components, thermal stability, and crystallinity of as‐prepared hybrid hydrogels, respectively. In vitro time‐dependent biodegradability, antimicrobial study, and cytotoxicity were also carried out to evaluate their extensive biocompatibility and cytotoxic behavior. More interestingly, in vitro drug release study allowed for the controlled release of cephradine. Therefore, this facile strategy developed the novel biocompatible and biodegradable hybrid hydrogels, which could significantly expand the scope of these hydrogels in other biomedical applications like scaffolds, skin regeneration, tissue engineering, etc.  相似文献   

6.
Local application of anticancer agents prolongs the presence time and increases the concentration of drug in the target place and therefore may reduce serious side effects compared to drug systemic administration. The preparation of fibrous materials of polylactide (PLA) and polyethylene glycol (PEG) loaded with paclitaxel (PTX, 1 or 10 wt%) is presented. Scanning electron microscopy proves that PTX is homogeneously incorporated into the fibers. The addition of PEG of various molecular weights (6, 20, or 35 kDa) ensures the release of significantly higher amounts of hydrophobic PTX in a prolonged release time compared to the fibers containing PTX only. Present PLA‐PEG fibrous carriers can serve as a drug depot for PTX since they exhibit significant toxicity for cancer cell lines in several‐day experiment. They are promising for local recurrence therapy, where the initial release is efficient to kill tumor cells and continued release can prevent their subsequent proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号